Model Card for Model ID

Model Details

GPT2-Medium trained using SFTTrainer using chat templates. Use a conversational dataset (Kukedlc/dpo-orpo-spanish-15k)

Usage

  • Using AutoModel

    from transformers import AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig
    import torch
    
    sys_prompt="Eres un asistente de IA, debes responder amablemente a las preguntas que haga el usuario"
    messages=[{'role':'system','content':sys_prompt},{'role':'user','content':'hola quién eres?'}]
    
    base_model="jhonparra18/gpt2-med-sft-chat-spanish"
    
    model = AutoModelForCausalLM.from_pretrained(base_model,torch_dtype=torch.float16,device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(base_model)
    
    #define your generation args
    generation_kwargs={
        'num_beams':5,
        'no_repeat_ngram_size':2,
        'do_sample':True,
        'early_stopping':True,
        'top_p':0.95
    }
    
    tokenizer.padding_side="left"
    model_inputs=tokenizer.apply_chat_template(messages,tokenize=True,return_tensors="pt",return_dict=True,padding=True)
    outputs=model.generate(
        **model_inputs,
        **generation_kwargs
    )
    for i, output in enumerate(outputs):
      print("{}: {}".format(i, tokenizer.decode(output, skip_special_tokens=True)))
    
  • Pipelines

    from transformers import pipeline
    
    pipe=pipeline("text-generation",model=base_model,device_map="auto",**generation_kwargs)
    outputs=pipe(messages)
    print(outputs[0]['generated_text'][-1]['content'])
    
Downloads last month
17
Safetensors
Model size
355M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jhonparra18/gpt2-med-sft-chat-spanish

Finetuned
(121)
this model

Dataset used to train jhonparra18/gpt2-med-sft-chat-spanish