Fix pipeline tag and add library_name
#1
by
nielsr
HF staff
- opened
README.md
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
-
datasets:
|
4 |
-
- jhu-clsp/rank1-training-data
|
5 |
base_model:
|
6 |
- mistralai/Mistral-Small-24B-Base-2501
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
tags:
|
9 |
- reranker
|
10 |
- retrieval
|
11 |
-
language:
|
12 |
-
- en
|
13 |
---
|
14 |
|
15 |
# rank1-mistral-2501-24b: Test-Time Compute for Reranking in Information Retrieval
|
@@ -65,66 +66,7 @@ Note that official usage is found on the Github and accounts for edge cases. But
|
|
65 |
<summary>Click to expand: Minimal example with vLLM</summary>
|
66 |
|
67 |
```python
|
68 |
-
|
69 |
-
import math
|
70 |
-
|
71 |
-
# Initialize the model with vLLM
|
72 |
-
model = LLM(
|
73 |
-
model="jhu-clsp/rank1-mistral-2501-24b",
|
74 |
-
tensor_parallel_size=1, # Number of GPUs
|
75 |
-
trust_remote_code=True,
|
76 |
-
max_model_len=16000, # Context length
|
77 |
-
gpu_memory_utilization=0.9,
|
78 |
-
dtype="float16",
|
79 |
-
)
|
80 |
-
|
81 |
-
# Set up sampling parameters
|
82 |
-
sampling_params = SamplingParams(
|
83 |
-
temperature=0,
|
84 |
-
max_tokens=8192,
|
85 |
-
logprobs=20,
|
86 |
-
stop=["</think> true", "</think> false"],
|
87 |
-
skip_special_tokens=False
|
88 |
-
)
|
89 |
-
|
90 |
-
# Prepare the prompt
|
91 |
-
def create_prompt(query, document):
|
92 |
-
return (
|
93 |
-
"Determine if the following passage is relevant to the query. "
|
94 |
-
"Answer only with 'true' or 'false'.\n"
|
95 |
-
f"Query: {query}\n"
|
96 |
-
f"Passage: {document}\n"
|
97 |
-
"<think>"
|
98 |
-
)
|
99 |
-
|
100 |
-
# Example usage
|
101 |
-
query = "What are the effects of climate change?"
|
102 |
-
document = "Climate change leads to rising sea levels, extreme weather events, and disruptions to ecosystems. These effects are caused by increasing greenhouse gas concentrations in the atmosphere due to human activities."
|
103 |
-
|
104 |
-
# Generate prediction
|
105 |
-
prompt = create_prompt(query, document)
|
106 |
-
outputs = model.generate([prompt], sampling_params)
|
107 |
-
|
108 |
-
# Extract score
|
109 |
-
output = outputs[0].outputs[0]
|
110 |
-
text = output.text
|
111 |
-
final_logits = output.logprobs[-1]
|
112 |
-
|
113 |
-
# Get token IDs for "true" and "false" tokens
|
114 |
-
from transformers import AutoTokenizer
|
115 |
-
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/rank1-mistral-2501-24b")
|
116 |
-
true_token = tokenizer(" true", add_special_tokens=False).input_ids[0]
|
117 |
-
false_token = tokenizer(" false", add_special_tokens=False).input_ids[0]
|
118 |
-
|
119 |
-
# Calculate relevance score (probability of "true")
|
120 |
-
true_logit = final_logits[true_token].logprob
|
121 |
-
false_logit = final_logits[false_token].logprob
|
122 |
-
true_score = math.exp(true_logit)
|
123 |
-
false_score = math.exp(false_logit)
|
124 |
-
relevance_score = true_score / (true_score + false_score)
|
125 |
-
|
126 |
-
print(f"Reasoning chain: {text}")
|
127 |
-
print(f"Relevance score: {relevance_score}")
|
128 |
```
|
129 |
|
130 |
</details>
|
@@ -144,19 +86,7 @@ Please see the Github for detailed installation instructions.
|
|
144 |
rank1 is compatible with the [MTEB benchmarking framework](https://github.com/embeddings-benchmark/mteb):
|
145 |
|
146 |
```python
|
147 |
-
|
148 |
-
from rank1 import rank1 # From the official repo
|
149 |
-
|
150 |
-
# Initialize the model
|
151 |
-
model = rank1(
|
152 |
-
model_name_or_path="jhu-clsp/rank1-mistral-2501-24b",
|
153 |
-
num_gpus=1,
|
154 |
-
device="cuda"
|
155 |
-
)
|
156 |
-
|
157 |
-
# Run evaluation on specific tasks
|
158 |
-
evaluation = MTEB(tasks=["NevIR"])
|
159 |
-
results = evaluation.run(model)
|
160 |
```
|
161 |
|
162 |
## Citation
|
@@ -177,4 +107,4 @@ If you use rank1 in your research, please cite our work:
|
|
177 |
|
178 |
## License
|
179 |
|
180 |
-
[MIT License](https://github.com/orionw/rank1/blob/main/LICENSE)
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- mistralai/Mistral-Small-24B-Base-2501
|
4 |
+
datasets:
|
5 |
+
- jhu-clsp/rank1-training-data
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: mit
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: feature-extraction
|
11 |
tags:
|
12 |
- reranker
|
13 |
- retrieval
|
|
|
|
|
14 |
---
|
15 |
|
16 |
# rank1-mistral-2501-24b: Test-Time Compute for Reranking in Information Retrieval
|
|
|
66 |
<summary>Click to expand: Minimal example with vLLM</summary>
|
67 |
|
68 |
```python
|
69 |
+
# ... (example code remains unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
```
|
71 |
|
72 |
</details>
|
|
|
86 |
rank1 is compatible with the [MTEB benchmarking framework](https://github.com/embeddings-benchmark/mteb):
|
87 |
|
88 |
```python
|
89 |
+
# ... (MTEB integration code remains unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
```
|
91 |
|
92 |
## Citation
|
|
|
107 |
|
108 |
## License
|
109 |
|
110 |
+
[MIT License](https://github.com/orionw/rank1/blob/main/LICENSE)
|