|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- finetuner |
|
- mteb |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
datasets: |
|
- jinaai/negation-dataset |
|
language: en |
|
license: apache-2.0 |
|
model-index: |
|
- name: jina-triplets-large |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 68.92537313432835 |
|
- type: ap |
|
value: 29.723758877632513 |
|
- type: f1 |
|
value: 61.909704211663794 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 69.13669999999999 |
|
- type: ap |
|
value: 65.30216072238086 |
|
- type: f1 |
|
value: 67.1890891071034 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 31.384 |
|
- type: f1 |
|
value: 30.016752348953723 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.613 |
|
- type: map_at_10 |
|
value: 37.897 |
|
- type: map_at_100 |
|
value: 39.093 |
|
- type: map_at_1000 |
|
value: 39.109 |
|
- type: map_at_3 |
|
value: 32.824 |
|
- type: map_at_5 |
|
value: 35.679 |
|
- type: mrr_at_1 |
|
value: 23.826 |
|
- type: mrr_at_10 |
|
value: 37.997 |
|
- type: mrr_at_100 |
|
value: 39.186 |
|
- type: mrr_at_1000 |
|
value: 39.202 |
|
- type: mrr_at_3 |
|
value: 32.918 |
|
- type: mrr_at_5 |
|
value: 35.748999999999995 |
|
- type: ndcg_at_1 |
|
value: 23.613 |
|
- type: ndcg_at_10 |
|
value: 46.482 |
|
- type: ndcg_at_100 |
|
value: 51.55499999999999 |
|
- type: ndcg_at_1000 |
|
value: 51.974 |
|
- type: ndcg_at_3 |
|
value: 35.964 |
|
- type: ndcg_at_5 |
|
value: 41.144999999999996 |
|
- type: precision_at_1 |
|
value: 23.613 |
|
- type: precision_at_10 |
|
value: 7.417999999999999 |
|
- type: precision_at_100 |
|
value: 0.963 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 15.031 |
|
- type: precision_at_5 |
|
value: 11.55 |
|
- type: recall_at_1 |
|
value: 23.613 |
|
- type: recall_at_10 |
|
value: 74.182 |
|
- type: recall_at_100 |
|
value: 96.30199999999999 |
|
- type: recall_at_1000 |
|
value: 99.57300000000001 |
|
- type: recall_at_3 |
|
value: 45.092 |
|
- type: recall_at_5 |
|
value: 57.752 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 40.51285742156528 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 31.5825964077496 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 62.830281630546835 |
|
- type: mrr |
|
value: 75.93072593765115 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.26764516732737 |
|
- type: cos_sim_spearman |
|
value: 84.42541766631741 |
|
- type: euclidean_pearson |
|
value: 48.71357447655235 |
|
- type: euclidean_spearman |
|
value: 49.2023259276511 |
|
- type: manhattan_pearson |
|
value: 48.36366272727299 |
|
- type: manhattan_spearman |
|
value: 48.457128224924354 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 85.3409090909091 |
|
- type: f1 |
|
value: 85.25262617676835 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 33.560193912974974 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 28.4426572644577 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.822999999999997 |
|
- type: map_at_10 |
|
value: 39.088 |
|
- type: map_at_100 |
|
value: 40.561 |
|
- type: map_at_1000 |
|
value: 40.69 |
|
- type: map_at_3 |
|
value: 35.701 |
|
- type: map_at_5 |
|
value: 37.556 |
|
- type: mrr_at_1 |
|
value: 33.906 |
|
- type: mrr_at_10 |
|
value: 44.527 |
|
- type: mrr_at_100 |
|
value: 45.403999999999996 |
|
- type: mrr_at_1000 |
|
value: 45.452 |
|
- type: mrr_at_3 |
|
value: 41.726 |
|
- type: mrr_at_5 |
|
value: 43.314 |
|
- type: ndcg_at_1 |
|
value: 33.906 |
|
- type: ndcg_at_10 |
|
value: 45.591 |
|
- type: ndcg_at_100 |
|
value: 51.041000000000004 |
|
- type: ndcg_at_1000 |
|
value: 53.1 |
|
- type: ndcg_at_3 |
|
value: 40.324 |
|
- type: ndcg_at_5 |
|
value: 42.723 |
|
- type: precision_at_1 |
|
value: 33.906 |
|
- type: precision_at_10 |
|
value: 8.655 |
|
- type: precision_at_100 |
|
value: 1.418 |
|
- type: precision_at_1000 |
|
value: 0.19499999999999998 |
|
- type: precision_at_3 |
|
value: 19.123 |
|
- type: precision_at_5 |
|
value: 13.963000000000001 |
|
- type: recall_at_1 |
|
value: 27.822999999999997 |
|
- type: recall_at_10 |
|
value: 58.63699999999999 |
|
- type: recall_at_100 |
|
value: 80.874 |
|
- type: recall_at_1000 |
|
value: 93.82000000000001 |
|
- type: recall_at_3 |
|
value: 44.116 |
|
- type: recall_at_5 |
|
value: 50.178999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.823999999999998 |
|
- type: map_at_10 |
|
value: 37.006 |
|
- type: map_at_100 |
|
value: 38.256 |
|
- type: map_at_1000 |
|
value: 38.397999999999996 |
|
- type: map_at_3 |
|
value: 34.011 |
|
- type: map_at_5 |
|
value: 35.643 |
|
- type: mrr_at_1 |
|
value: 34.268 |
|
- type: mrr_at_10 |
|
value: 43.374 |
|
- type: mrr_at_100 |
|
value: 44.096000000000004 |
|
- type: mrr_at_1000 |
|
value: 44.144 |
|
- type: mrr_at_3 |
|
value: 41.008 |
|
- type: mrr_at_5 |
|
value: 42.359 |
|
- type: ndcg_at_1 |
|
value: 34.268 |
|
- type: ndcg_at_10 |
|
value: 43.02 |
|
- type: ndcg_at_100 |
|
value: 47.747 |
|
- type: ndcg_at_1000 |
|
value: 50.019999999999996 |
|
- type: ndcg_at_3 |
|
value: 38.687 |
|
- type: ndcg_at_5 |
|
value: 40.647 |
|
- type: precision_at_1 |
|
value: 34.268 |
|
- type: precision_at_10 |
|
value: 8.261000000000001 |
|
- type: precision_at_100 |
|
value: 1.376 |
|
- type: precision_at_1000 |
|
value: 0.189 |
|
- type: precision_at_3 |
|
value: 19.108 |
|
- type: precision_at_5 |
|
value: 13.489999999999998 |
|
- type: recall_at_1 |
|
value: 26.823999999999998 |
|
- type: recall_at_10 |
|
value: 53.84100000000001 |
|
- type: recall_at_100 |
|
value: 73.992 |
|
- type: recall_at_1000 |
|
value: 88.524 |
|
- type: recall_at_3 |
|
value: 40.711000000000006 |
|
- type: recall_at_5 |
|
value: 46.477000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.307 |
|
- type: map_at_10 |
|
value: 45.144 |
|
- type: map_at_100 |
|
value: 46.351 |
|
- type: map_at_1000 |
|
value: 46.414 |
|
- type: map_at_3 |
|
value: 42.315000000000005 |
|
- type: map_at_5 |
|
value: 43.991 |
|
- type: mrr_at_1 |
|
value: 39.06 |
|
- type: mrr_at_10 |
|
value: 48.612 |
|
- type: mrr_at_100 |
|
value: 49.425000000000004 |
|
- type: mrr_at_1000 |
|
value: 49.458999999999996 |
|
- type: mrr_at_3 |
|
value: 46.144 |
|
- type: mrr_at_5 |
|
value: 47.654999999999994 |
|
- type: ndcg_at_1 |
|
value: 39.06 |
|
- type: ndcg_at_10 |
|
value: 50.647 |
|
- type: ndcg_at_100 |
|
value: 55.620000000000005 |
|
- type: ndcg_at_1000 |
|
value: 56.976000000000006 |
|
- type: ndcg_at_3 |
|
value: 45.705 |
|
- type: ndcg_at_5 |
|
value: 48.269 |
|
- type: precision_at_1 |
|
value: 39.06 |
|
- type: precision_at_10 |
|
value: 8.082 |
|
- type: precision_at_100 |
|
value: 1.161 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 20.376 |
|
- type: precision_at_5 |
|
value: 14.069 |
|
- type: recall_at_1 |
|
value: 34.307 |
|
- type: recall_at_10 |
|
value: 63.497 |
|
- type: recall_at_100 |
|
value: 85.038 |
|
- type: recall_at_1000 |
|
value: 94.782 |
|
- type: recall_at_3 |
|
value: 50.209 |
|
- type: recall_at_5 |
|
value: 56.525000000000006 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.448 |
|
- type: map_at_10 |
|
value: 34.86 |
|
- type: map_at_100 |
|
value: 36.004999999999995 |
|
- type: map_at_1000 |
|
value: 36.081 |
|
- type: map_at_3 |
|
value: 32.527 |
|
- type: map_at_5 |
|
value: 33.955 |
|
- type: mrr_at_1 |
|
value: 28.701 |
|
- type: mrr_at_10 |
|
value: 36.909 |
|
- type: mrr_at_100 |
|
value: 37.89 |
|
- type: mrr_at_1000 |
|
value: 37.945 |
|
- type: mrr_at_3 |
|
value: 34.576 |
|
- type: mrr_at_5 |
|
value: 35.966 |
|
- type: ndcg_at_1 |
|
value: 28.701 |
|
- type: ndcg_at_10 |
|
value: 39.507999999999996 |
|
- type: ndcg_at_100 |
|
value: 45.056000000000004 |
|
- type: ndcg_at_1000 |
|
value: 47.034 |
|
- type: ndcg_at_3 |
|
value: 34.985 |
|
- type: ndcg_at_5 |
|
value: 37.384 |
|
- type: precision_at_1 |
|
value: 28.701 |
|
- type: precision_at_10 |
|
value: 5.921 |
|
- type: precision_at_100 |
|
value: 0.914 |
|
- type: precision_at_1000 |
|
value: 0.11199999999999999 |
|
- type: precision_at_3 |
|
value: 14.689 |
|
- type: precision_at_5 |
|
value: 10.237 |
|
- type: recall_at_1 |
|
value: 26.448 |
|
- type: recall_at_10 |
|
value: 51.781 |
|
- type: recall_at_100 |
|
value: 77.142 |
|
- type: recall_at_1000 |
|
value: 92.10000000000001 |
|
- type: recall_at_3 |
|
value: 39.698 |
|
- type: recall_at_5 |
|
value: 45.469 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.174000000000001 |
|
- type: map_at_10 |
|
value: 22.019 |
|
- type: map_at_100 |
|
value: 23.18 |
|
- type: map_at_1000 |
|
value: 23.304 |
|
- type: map_at_3 |
|
value: 19.332 |
|
- type: map_at_5 |
|
value: 20.816000000000003 |
|
- type: mrr_at_1 |
|
value: 17.785999999999998 |
|
- type: mrr_at_10 |
|
value: 26.233 |
|
- type: mrr_at_100 |
|
value: 27.254 |
|
- type: mrr_at_1000 |
|
value: 27.328000000000003 |
|
- type: mrr_at_3 |
|
value: 23.653 |
|
- type: mrr_at_5 |
|
value: 25.095 |
|
- type: ndcg_at_1 |
|
value: 17.785999999999998 |
|
- type: ndcg_at_10 |
|
value: 27.236 |
|
- type: ndcg_at_100 |
|
value: 32.932 |
|
- type: ndcg_at_1000 |
|
value: 36.134 |
|
- type: ndcg_at_3 |
|
value: 22.33 |
|
- type: ndcg_at_5 |
|
value: 24.573999999999998 |
|
- type: precision_at_1 |
|
value: 17.785999999999998 |
|
- type: precision_at_10 |
|
value: 5.286 |
|
- type: precision_at_100 |
|
value: 0.9369999999999999 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 11.07 |
|
- type: precision_at_5 |
|
value: 8.308 |
|
- type: recall_at_1 |
|
value: 14.174000000000001 |
|
- type: recall_at_10 |
|
value: 39.135 |
|
- type: recall_at_100 |
|
value: 64.095 |
|
- type: recall_at_1000 |
|
value: 87.485 |
|
- type: recall_at_3 |
|
value: 25.496999999999996 |
|
- type: recall_at_5 |
|
value: 31.148999999999997 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.371000000000002 |
|
- type: map_at_10 |
|
value: 33.074999999999996 |
|
- type: map_at_100 |
|
value: 34.486 |
|
- type: map_at_1000 |
|
value: 34.608 |
|
- type: map_at_3 |
|
value: 30.483 |
|
- type: map_at_5 |
|
value: 31.972 |
|
- type: mrr_at_1 |
|
value: 29.548000000000002 |
|
- type: mrr_at_10 |
|
value: 38.431 |
|
- type: mrr_at_100 |
|
value: 39.347 |
|
- type: mrr_at_1000 |
|
value: 39.4 |
|
- type: mrr_at_3 |
|
value: 35.980000000000004 |
|
- type: mrr_at_5 |
|
value: 37.413999999999994 |
|
- type: ndcg_at_1 |
|
value: 29.548000000000002 |
|
- type: ndcg_at_10 |
|
value: 38.552 |
|
- type: ndcg_at_100 |
|
value: 44.598 |
|
- type: ndcg_at_1000 |
|
value: 47.0 |
|
- type: ndcg_at_3 |
|
value: 34.109 |
|
- type: ndcg_at_5 |
|
value: 36.263 |
|
- type: precision_at_1 |
|
value: 29.548000000000002 |
|
- type: precision_at_10 |
|
value: 6.92 |
|
- type: precision_at_100 |
|
value: 1.179 |
|
- type: precision_at_1000 |
|
value: 0.159 |
|
- type: precision_at_3 |
|
value: 16.137 |
|
- type: precision_at_5 |
|
value: 11.511000000000001 |
|
- type: recall_at_1 |
|
value: 24.371000000000002 |
|
- type: recall_at_10 |
|
value: 49.586999999999996 |
|
- type: recall_at_100 |
|
value: 75.15899999999999 |
|
- type: recall_at_1000 |
|
value: 91.06 |
|
- type: recall_at_3 |
|
value: 37.09 |
|
- type: recall_at_5 |
|
value: 42.588 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.517 |
|
- type: map_at_10 |
|
value: 32.969 |
|
- type: map_at_100 |
|
value: 34.199 |
|
- type: map_at_1000 |
|
value: 34.322 |
|
- type: map_at_3 |
|
value: 30.270999999999997 |
|
- type: map_at_5 |
|
value: 31.863000000000003 |
|
- type: mrr_at_1 |
|
value: 30.479 |
|
- type: mrr_at_10 |
|
value: 38.633 |
|
- type: mrr_at_100 |
|
value: 39.522 |
|
- type: mrr_at_1000 |
|
value: 39.583 |
|
- type: mrr_at_3 |
|
value: 36.454 |
|
- type: mrr_at_5 |
|
value: 37.744 |
|
- type: ndcg_at_1 |
|
value: 30.479 |
|
- type: ndcg_at_10 |
|
value: 38.269 |
|
- type: ndcg_at_100 |
|
value: 43.91 |
|
- type: ndcg_at_1000 |
|
value: 46.564 |
|
- type: ndcg_at_3 |
|
value: 34.03 |
|
- type: ndcg_at_5 |
|
value: 36.155 |
|
- type: precision_at_1 |
|
value: 30.479 |
|
- type: precision_at_10 |
|
value: 6.815 |
|
- type: precision_at_100 |
|
value: 1.138 |
|
- type: precision_at_1000 |
|
value: 0.158 |
|
- type: precision_at_3 |
|
value: 16.058 |
|
- type: precision_at_5 |
|
value: 11.416 |
|
- type: recall_at_1 |
|
value: 24.517 |
|
- type: recall_at_10 |
|
value: 48.559000000000005 |
|
- type: recall_at_100 |
|
value: 73.307 |
|
- type: recall_at_1000 |
|
value: 91.508 |
|
- type: recall_at_3 |
|
value: 36.563 |
|
- type: recall_at_5 |
|
value: 42.375 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.336166666666664 |
|
- type: map_at_10 |
|
value: 32.80791666666667 |
|
- type: map_at_100 |
|
value: 34.043416666666666 |
|
- type: map_at_1000 |
|
value: 34.162749999999996 |
|
- type: map_at_3 |
|
value: 30.187083333333337 |
|
- type: map_at_5 |
|
value: 31.637833333333337 |
|
- type: mrr_at_1 |
|
value: 28.669583333333343 |
|
- type: mrr_at_10 |
|
value: 36.88616666666667 |
|
- type: mrr_at_100 |
|
value: 37.80233333333333 |
|
- type: mrr_at_1000 |
|
value: 37.86141666666666 |
|
- type: mrr_at_3 |
|
value: 34.537416666666665 |
|
- type: mrr_at_5 |
|
value: 35.84275 |
|
- type: ndcg_at_1 |
|
value: 28.669583333333343 |
|
- type: ndcg_at_10 |
|
value: 37.956916666666665 |
|
- type: ndcg_at_100 |
|
value: 43.39475 |
|
- type: ndcg_at_1000 |
|
value: 45.79925 |
|
- type: ndcg_at_3 |
|
value: 33.43683333333334 |
|
- type: ndcg_at_5 |
|
value: 35.52575 |
|
- type: precision_at_1 |
|
value: 28.669583333333343 |
|
- type: precision_at_10 |
|
value: 6.603833333333335 |
|
- type: precision_at_100 |
|
value: 1.1079166666666667 |
|
- type: precision_at_1000 |
|
value: 0.15208333333333335 |
|
- type: precision_at_3 |
|
value: 15.338750000000001 |
|
- type: precision_at_5 |
|
value: 10.88775 |
|
- type: recall_at_1 |
|
value: 24.336166666666664 |
|
- type: recall_at_10 |
|
value: 49.19358333333333 |
|
- type: recall_at_100 |
|
value: 73.07583333333334 |
|
- type: recall_at_1000 |
|
value: 89.81675 |
|
- type: recall_at_3 |
|
value: 36.54091666666667 |
|
- type: recall_at_5 |
|
value: 41.919250000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.388 |
|
- type: map_at_10 |
|
value: 29.408 |
|
- type: map_at_100 |
|
value: 30.452 |
|
- type: map_at_1000 |
|
value: 30.546 |
|
- type: map_at_3 |
|
value: 27.139000000000003 |
|
- type: map_at_5 |
|
value: 28.402 |
|
- type: mrr_at_1 |
|
value: 25.46 |
|
- type: mrr_at_10 |
|
value: 31.966 |
|
- type: mrr_at_100 |
|
value: 32.879999999999995 |
|
- type: mrr_at_1000 |
|
value: 32.944 |
|
- type: mrr_at_3 |
|
value: 29.755 |
|
- type: mrr_at_5 |
|
value: 30.974 |
|
- type: ndcg_at_1 |
|
value: 25.46 |
|
- type: ndcg_at_10 |
|
value: 33.449 |
|
- type: ndcg_at_100 |
|
value: 38.67 |
|
- type: ndcg_at_1000 |
|
value: 41.035 |
|
- type: ndcg_at_3 |
|
value: 29.048000000000002 |
|
- type: ndcg_at_5 |
|
value: 31.127 |
|
- type: precision_at_1 |
|
value: 25.46 |
|
- type: precision_at_10 |
|
value: 5.199 |
|
- type: precision_at_100 |
|
value: 0.8670000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 12.168 |
|
- type: precision_at_5 |
|
value: 8.62 |
|
- type: recall_at_1 |
|
value: 23.388 |
|
- type: recall_at_10 |
|
value: 43.428 |
|
- type: recall_at_100 |
|
value: 67.245 |
|
- type: recall_at_1000 |
|
value: 84.75399999999999 |
|
- type: recall_at_3 |
|
value: 31.416 |
|
- type: recall_at_5 |
|
value: 36.451 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.136000000000003 |
|
- type: map_at_10 |
|
value: 24.102999999999998 |
|
- type: map_at_100 |
|
value: 25.219 |
|
- type: map_at_1000 |
|
value: 25.344 |
|
- type: map_at_3 |
|
value: 22.004 |
|
- type: map_at_5 |
|
value: 23.145 |
|
- type: mrr_at_1 |
|
value: 20.613 |
|
- type: mrr_at_10 |
|
value: 27.753 |
|
- type: mrr_at_100 |
|
value: 28.698 |
|
- type: mrr_at_1000 |
|
value: 28.776000000000003 |
|
- type: mrr_at_3 |
|
value: 25.711000000000002 |
|
- type: mrr_at_5 |
|
value: 26.795 |
|
- type: ndcg_at_1 |
|
value: 20.613 |
|
- type: ndcg_at_10 |
|
value: 28.510999999999996 |
|
- type: ndcg_at_100 |
|
value: 33.924 |
|
- type: ndcg_at_1000 |
|
value: 36.849 |
|
- type: ndcg_at_3 |
|
value: 24.664 |
|
- type: ndcg_at_5 |
|
value: 26.365 |
|
- type: precision_at_1 |
|
value: 20.613 |
|
- type: precision_at_10 |
|
value: 5.069 |
|
- type: precision_at_100 |
|
value: 0.918 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 11.574 |
|
- type: precision_at_5 |
|
value: 8.211 |
|
- type: recall_at_1 |
|
value: 17.136000000000003 |
|
- type: recall_at_10 |
|
value: 38.232 |
|
- type: recall_at_100 |
|
value: 62.571 |
|
- type: recall_at_1000 |
|
value: 83.23 |
|
- type: recall_at_3 |
|
value: 27.468999999999998 |
|
- type: recall_at_5 |
|
value: 31.852999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.580000000000002 |
|
- type: map_at_10 |
|
value: 33.449 |
|
- type: map_at_100 |
|
value: 34.58 |
|
- type: map_at_1000 |
|
value: 34.692 |
|
- type: map_at_3 |
|
value: 30.660999999999998 |
|
- type: map_at_5 |
|
value: 32.425 |
|
- type: mrr_at_1 |
|
value: 30.037000000000003 |
|
- type: mrr_at_10 |
|
value: 37.443 |
|
- type: mrr_at_100 |
|
value: 38.32 |
|
- type: mrr_at_1000 |
|
value: 38.384 |
|
- type: mrr_at_3 |
|
value: 34.778999999999996 |
|
- type: mrr_at_5 |
|
value: 36.458 |
|
- type: ndcg_at_1 |
|
value: 30.037000000000003 |
|
- type: ndcg_at_10 |
|
value: 38.46 |
|
- type: ndcg_at_100 |
|
value: 43.746 |
|
- type: ndcg_at_1000 |
|
value: 46.28 |
|
- type: ndcg_at_3 |
|
value: 33.52 |
|
- type: ndcg_at_5 |
|
value: 36.175000000000004 |
|
- type: precision_at_1 |
|
value: 30.037000000000003 |
|
- type: precision_at_10 |
|
value: 6.418 |
|
- type: precision_at_100 |
|
value: 1.0210000000000001 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 15.018999999999998 |
|
- type: precision_at_5 |
|
value: 10.877 |
|
- type: recall_at_1 |
|
value: 25.580000000000002 |
|
- type: recall_at_10 |
|
value: 49.830000000000005 |
|
- type: recall_at_100 |
|
value: 73.04899999999999 |
|
- type: recall_at_1000 |
|
value: 90.751 |
|
- type: recall_at_3 |
|
value: 36.370999999999995 |
|
- type: recall_at_5 |
|
value: 43.104 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.071 |
|
- type: map_at_10 |
|
value: 33.384 |
|
- type: map_at_100 |
|
value: 35.004999999999995 |
|
- type: map_at_1000 |
|
value: 35.215999999999994 |
|
- type: map_at_3 |
|
value: 30.459000000000003 |
|
- type: map_at_5 |
|
value: 31.769 |
|
- type: mrr_at_1 |
|
value: 28.854000000000003 |
|
- type: mrr_at_10 |
|
value: 37.512 |
|
- type: mrr_at_100 |
|
value: 38.567 |
|
- type: mrr_at_1000 |
|
value: 38.618 |
|
- type: mrr_at_3 |
|
value: 35.211 |
|
- type: mrr_at_5 |
|
value: 36.13 |
|
- type: ndcg_at_1 |
|
value: 28.854000000000003 |
|
- type: ndcg_at_10 |
|
value: 39.216 |
|
- type: ndcg_at_100 |
|
value: 45.214 |
|
- type: ndcg_at_1000 |
|
value: 47.573 |
|
- type: ndcg_at_3 |
|
value: 34.597 |
|
- type: ndcg_at_5 |
|
value: 36.063 |
|
- type: precision_at_1 |
|
value: 28.854000000000003 |
|
- type: precision_at_10 |
|
value: 7.648000000000001 |
|
- type: precision_at_100 |
|
value: 1.545 |
|
- type: precision_at_1000 |
|
value: 0.241 |
|
- type: precision_at_3 |
|
value: 16.667 |
|
- type: precision_at_5 |
|
value: 11.818 |
|
- type: recall_at_1 |
|
value: 24.071 |
|
- type: recall_at_10 |
|
value: 50.802 |
|
- type: recall_at_100 |
|
value: 77.453 |
|
- type: recall_at_1000 |
|
value: 92.304 |
|
- type: recall_at_3 |
|
value: 36.846000000000004 |
|
- type: recall_at_5 |
|
value: 41.14 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.395 |
|
- type: map_at_10 |
|
value: 29.189999999999998 |
|
- type: map_at_100 |
|
value: 30.226999999999997 |
|
- type: map_at_1000 |
|
value: 30.337999999999997 |
|
- type: map_at_3 |
|
value: 27.342 |
|
- type: map_at_5 |
|
value: 28.116999999999997 |
|
- type: mrr_at_1 |
|
value: 25.323 |
|
- type: mrr_at_10 |
|
value: 31.241000000000003 |
|
- type: mrr_at_100 |
|
value: 32.225 |
|
- type: mrr_at_1000 |
|
value: 32.304 |
|
- type: mrr_at_3 |
|
value: 29.452 |
|
- type: mrr_at_5 |
|
value: 30.209000000000003 |
|
- type: ndcg_at_1 |
|
value: 25.323 |
|
- type: ndcg_at_10 |
|
value: 33.024 |
|
- type: ndcg_at_100 |
|
value: 38.279 |
|
- type: ndcg_at_1000 |
|
value: 41.026 |
|
- type: ndcg_at_3 |
|
value: 29.243000000000002 |
|
- type: ndcg_at_5 |
|
value: 30.564000000000004 |
|
- type: precision_at_1 |
|
value: 25.323 |
|
- type: precision_at_10 |
|
value: 4.972 |
|
- type: precision_at_100 |
|
value: 0.8210000000000001 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 12.076 |
|
- type: precision_at_5 |
|
value: 8.133 |
|
- type: recall_at_1 |
|
value: 23.395 |
|
- type: recall_at_10 |
|
value: 42.994 |
|
- type: recall_at_100 |
|
value: 66.985 |
|
- type: recall_at_1000 |
|
value: 87.483 |
|
- type: recall_at_3 |
|
value: 32.505 |
|
- type: recall_at_5 |
|
value: 35.721000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.322000000000001 |
|
- type: map_at_10 |
|
value: 14.491000000000001 |
|
- type: map_at_100 |
|
value: 16.066 |
|
- type: map_at_1000 |
|
value: 16.238 |
|
- type: map_at_3 |
|
value: 12.235 |
|
- type: map_at_5 |
|
value: 13.422999999999998 |
|
- type: mrr_at_1 |
|
value: 19.479 |
|
- type: mrr_at_10 |
|
value: 29.38 |
|
- type: mrr_at_100 |
|
value: 30.520999999999997 |
|
- type: mrr_at_1000 |
|
value: 30.570999999999998 |
|
- type: mrr_at_3 |
|
value: 26.395000000000003 |
|
- type: mrr_at_5 |
|
value: 27.982000000000003 |
|
- type: ndcg_at_1 |
|
value: 19.479 |
|
- type: ndcg_at_10 |
|
value: 21.215 |
|
- type: ndcg_at_100 |
|
value: 27.966 |
|
- type: ndcg_at_1000 |
|
value: 31.324 |
|
- type: ndcg_at_3 |
|
value: 17.194000000000003 |
|
- type: ndcg_at_5 |
|
value: 18.593 |
|
- type: precision_at_1 |
|
value: 19.479 |
|
- type: precision_at_10 |
|
value: 6.5280000000000005 |
|
- type: precision_at_100 |
|
value: 1.359 |
|
- type: precision_at_1000 |
|
value: 0.198 |
|
- type: precision_at_3 |
|
value: 12.703999999999999 |
|
- type: precision_at_5 |
|
value: 9.655 |
|
- type: recall_at_1 |
|
value: 8.322000000000001 |
|
- type: recall_at_10 |
|
value: 26.165 |
|
- type: recall_at_100 |
|
value: 49.573 |
|
- type: recall_at_1000 |
|
value: 68.501 |
|
- type: recall_at_3 |
|
value: 16.179 |
|
- type: recall_at_5 |
|
value: 20.175 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.003 |
|
- type: map_at_10 |
|
value: 16.087 |
|
- type: map_at_100 |
|
value: 21.363 |
|
- type: map_at_1000 |
|
value: 22.64 |
|
- type: map_at_3 |
|
value: 12.171999999999999 |
|
- type: map_at_5 |
|
value: 13.866 |
|
- type: mrr_at_1 |
|
value: 61.25000000000001 |
|
- type: mrr_at_10 |
|
value: 68.626 |
|
- type: mrr_at_100 |
|
value: 69.134 |
|
- type: mrr_at_1000 |
|
value: 69.144 |
|
- type: mrr_at_3 |
|
value: 67.042 |
|
- type: mrr_at_5 |
|
value: 67.929 |
|
- type: ndcg_at_1 |
|
value: 49.0 |
|
- type: ndcg_at_10 |
|
value: 34.132 |
|
- type: ndcg_at_100 |
|
value: 37.545 |
|
- type: ndcg_at_1000 |
|
value: 44.544 |
|
- type: ndcg_at_3 |
|
value: 38.946999999999996 |
|
- type: ndcg_at_5 |
|
value: 36.317 |
|
- type: precision_at_1 |
|
value: 61.25000000000001 |
|
- type: precision_at_10 |
|
value: 26.325 |
|
- type: precision_at_100 |
|
value: 8.173 |
|
- type: precision_at_1000 |
|
value: 1.778 |
|
- type: precision_at_3 |
|
value: 41.667 |
|
- type: precision_at_5 |
|
value: 34.300000000000004 |
|
- type: recall_at_1 |
|
value: 8.003 |
|
- type: recall_at_10 |
|
value: 20.577 |
|
- type: recall_at_100 |
|
value: 41.884 |
|
- type: recall_at_1000 |
|
value: 64.36500000000001 |
|
- type: recall_at_3 |
|
value: 13.602 |
|
- type: recall_at_5 |
|
value: 16.41 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 45.835 |
|
- type: f1 |
|
value: 41.66455981281837 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.717000000000006 |
|
- type: map_at_10 |
|
value: 66.34100000000001 |
|
- type: map_at_100 |
|
value: 66.776 |
|
- type: map_at_1000 |
|
value: 66.794 |
|
- type: map_at_3 |
|
value: 64.386 |
|
- type: map_at_5 |
|
value: 65.566 |
|
- type: mrr_at_1 |
|
value: 60.141 |
|
- type: mrr_at_10 |
|
value: 70.928 |
|
- type: mrr_at_100 |
|
value: 71.29299999999999 |
|
- type: mrr_at_1000 |
|
value: 71.30199999999999 |
|
- type: mrr_at_3 |
|
value: 69.07900000000001 |
|
- type: mrr_at_5 |
|
value: 70.244 |
|
- type: ndcg_at_1 |
|
value: 60.141 |
|
- type: ndcg_at_10 |
|
value: 71.90100000000001 |
|
- type: ndcg_at_100 |
|
value: 73.836 |
|
- type: ndcg_at_1000 |
|
value: 74.214 |
|
- type: ndcg_at_3 |
|
value: 68.203 |
|
- type: ndcg_at_5 |
|
value: 70.167 |
|
- type: precision_at_1 |
|
value: 60.141 |
|
- type: precision_at_10 |
|
value: 9.268 |
|
- type: precision_at_100 |
|
value: 1.03 |
|
- type: precision_at_1000 |
|
value: 0.108 |
|
- type: precision_at_3 |
|
value: 27.028000000000002 |
|
- type: precision_at_5 |
|
value: 17.342 |
|
- type: recall_at_1 |
|
value: 55.717000000000006 |
|
- type: recall_at_10 |
|
value: 84.66799999999999 |
|
- type: recall_at_100 |
|
value: 93.28 |
|
- type: recall_at_1000 |
|
value: 95.887 |
|
- type: recall_at_3 |
|
value: 74.541 |
|
- type: recall_at_5 |
|
value: 79.389 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.744 |
|
- type: map_at_10 |
|
value: 29.554000000000002 |
|
- type: map_at_100 |
|
value: 31.180000000000003 |
|
- type: map_at_1000 |
|
value: 31.372 |
|
- type: map_at_3 |
|
value: 25.6 |
|
- type: map_at_5 |
|
value: 27.642 |
|
- type: mrr_at_1 |
|
value: 35.802 |
|
- type: mrr_at_10 |
|
value: 44.812999999999995 |
|
- type: mrr_at_100 |
|
value: 45.56 |
|
- type: mrr_at_1000 |
|
value: 45.606 |
|
- type: mrr_at_3 |
|
value: 42.181000000000004 |
|
- type: mrr_at_5 |
|
value: 43.516 |
|
- type: ndcg_at_1 |
|
value: 35.802 |
|
- type: ndcg_at_10 |
|
value: 37.269999999999996 |
|
- type: ndcg_at_100 |
|
value: 43.575 |
|
- type: ndcg_at_1000 |
|
value: 46.916000000000004 |
|
- type: ndcg_at_3 |
|
value: 33.511 |
|
- type: ndcg_at_5 |
|
value: 34.504000000000005 |
|
- type: precision_at_1 |
|
value: 35.802 |
|
- type: precision_at_10 |
|
value: 10.448 |
|
- type: precision_at_100 |
|
value: 1.7129999999999999 |
|
- type: precision_at_1000 |
|
value: 0.231 |
|
- type: precision_at_3 |
|
value: 22.531000000000002 |
|
- type: precision_at_5 |
|
value: 16.512 |
|
- type: recall_at_1 |
|
value: 17.744 |
|
- type: recall_at_10 |
|
value: 44.616 |
|
- type: recall_at_100 |
|
value: 68.51899999999999 |
|
- type: recall_at_1000 |
|
value: 88.495 |
|
- type: recall_at_3 |
|
value: 30.235 |
|
- type: recall_at_5 |
|
value: 35.821999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.315 |
|
- type: map_at_10 |
|
value: 45.932 |
|
- type: map_at_100 |
|
value: 46.708 |
|
- type: map_at_1000 |
|
value: 46.778999999999996 |
|
- type: map_at_3 |
|
value: 43.472 |
|
- type: map_at_5 |
|
value: 45.022 |
|
- type: mrr_at_1 |
|
value: 66.631 |
|
- type: mrr_at_10 |
|
value: 73.083 |
|
- type: mrr_at_100 |
|
value: 73.405 |
|
- type: mrr_at_1000 |
|
value: 73.421 |
|
- type: mrr_at_3 |
|
value: 71.756 |
|
- type: mrr_at_5 |
|
value: 72.616 |
|
- type: ndcg_at_1 |
|
value: 66.631 |
|
- type: ndcg_at_10 |
|
value: 54.949000000000005 |
|
- type: ndcg_at_100 |
|
value: 57.965 |
|
- type: ndcg_at_1000 |
|
value: 59.467000000000006 |
|
- type: ndcg_at_3 |
|
value: 51.086 |
|
- type: ndcg_at_5 |
|
value: 53.272 |
|
- type: precision_at_1 |
|
value: 66.631 |
|
- type: precision_at_10 |
|
value: 11.178 |
|
- type: precision_at_100 |
|
value: 1.3559999999999999 |
|
- type: precision_at_1000 |
|
value: 0.156 |
|
- type: precision_at_3 |
|
value: 31.582 |
|
- type: precision_at_5 |
|
value: 20.678 |
|
- type: recall_at_1 |
|
value: 33.315 |
|
- type: recall_at_10 |
|
value: 55.888000000000005 |
|
- type: recall_at_100 |
|
value: 67.812 |
|
- type: recall_at_1000 |
|
value: 77.839 |
|
- type: recall_at_3 |
|
value: 47.373 |
|
- type: recall_at_5 |
|
value: 51.695 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 66.424 |
|
- type: ap |
|
value: 61.132235499939256 |
|
- type: f1 |
|
value: 66.07094958225315 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.575 |
|
- type: map_at_10 |
|
value: 33.509 |
|
- type: map_at_100 |
|
value: 34.725 |
|
- type: map_at_1000 |
|
value: 34.775 |
|
- type: map_at_3 |
|
value: 29.673 |
|
- type: map_at_5 |
|
value: 31.805 |
|
- type: mrr_at_1 |
|
value: 22.235 |
|
- type: mrr_at_10 |
|
value: 34.1 |
|
- type: mrr_at_100 |
|
value: 35.254999999999995 |
|
- type: mrr_at_1000 |
|
value: 35.299 |
|
- type: mrr_at_3 |
|
value: 30.334 |
|
- type: mrr_at_5 |
|
value: 32.419 |
|
- type: ndcg_at_1 |
|
value: 22.235 |
|
- type: ndcg_at_10 |
|
value: 40.341 |
|
- type: ndcg_at_100 |
|
value: 46.161 |
|
- type: ndcg_at_1000 |
|
value: 47.400999999999996 |
|
- type: ndcg_at_3 |
|
value: 32.482 |
|
- type: ndcg_at_5 |
|
value: 36.269 |
|
- type: precision_at_1 |
|
value: 22.235 |
|
- type: precision_at_10 |
|
value: 6.422999999999999 |
|
- type: precision_at_100 |
|
value: 0.9329999999999999 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 13.835 |
|
- type: precision_at_5 |
|
value: 10.226 |
|
- type: recall_at_1 |
|
value: 21.575 |
|
- type: recall_at_10 |
|
value: 61.448 |
|
- type: recall_at_100 |
|
value: 88.289 |
|
- type: recall_at_1000 |
|
value: 97.76899999999999 |
|
- type: recall_at_3 |
|
value: 39.971000000000004 |
|
- type: recall_at_5 |
|
value: 49.053000000000004 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 92.83401732786137 |
|
- type: f1 |
|
value: 92.47678691291068 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 76.08983128134975 |
|
- type: f1 |
|
value: 59.782936393820904 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 72.73032952252858 |
|
- type: f1 |
|
value: 70.72684765888265 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 77.08473436449226 |
|
- type: f1 |
|
value: 77.31457411257054 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 30.11980959210532 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 25.2587629106119 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 31.48268319779204 |
|
- type: mrr |
|
value: 32.501885728964304 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.284 |
|
- type: map_at_10 |
|
value: 11.509 |
|
- type: map_at_100 |
|
value: 14.624 |
|
- type: map_at_1000 |
|
value: 16.035 |
|
- type: map_at_3 |
|
value: 8.347999999999999 |
|
- type: map_at_5 |
|
value: 9.919 |
|
- type: mrr_at_1 |
|
value: 43.344 |
|
- type: mrr_at_10 |
|
value: 52.303999999999995 |
|
- type: mrr_at_100 |
|
value: 52.994 |
|
- type: mrr_at_1000 |
|
value: 53.032999999999994 |
|
- type: mrr_at_3 |
|
value: 50.361 |
|
- type: mrr_at_5 |
|
value: 51.754 |
|
- type: ndcg_at_1 |
|
value: 41.176 |
|
- type: ndcg_at_10 |
|
value: 32.244 |
|
- type: ndcg_at_100 |
|
value: 29.916999999999998 |
|
- type: ndcg_at_1000 |
|
value: 38.753 |
|
- type: ndcg_at_3 |
|
value: 36.856 |
|
- type: ndcg_at_5 |
|
value: 35.394999999999996 |
|
- type: precision_at_1 |
|
value: 43.034 |
|
- type: precision_at_10 |
|
value: 24.118000000000002 |
|
- type: precision_at_100 |
|
value: 7.926 |
|
- type: precision_at_1000 |
|
value: 2.045 |
|
- type: precision_at_3 |
|
value: 34.675 |
|
- type: precision_at_5 |
|
value: 31.146 |
|
- type: recall_at_1 |
|
value: 5.284 |
|
- type: recall_at_10 |
|
value: 15.457 |
|
- type: recall_at_100 |
|
value: 30.914 |
|
- type: recall_at_1000 |
|
value: 63.788999999999994 |
|
- type: recall_at_3 |
|
value: 9.596 |
|
- type: recall_at_5 |
|
value: 12.391 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.537999999999997 |
|
- type: map_at_10 |
|
value: 43.99 |
|
- type: map_at_100 |
|
value: 45.003 |
|
- type: map_at_1000 |
|
value: 45.04 |
|
- type: map_at_3 |
|
value: 39.814 |
|
- type: map_at_5 |
|
value: 42.166 |
|
- type: mrr_at_1 |
|
value: 33.256 |
|
- type: mrr_at_10 |
|
value: 46.487 |
|
- type: mrr_at_100 |
|
value: 47.264 |
|
- type: mrr_at_1000 |
|
value: 47.29 |
|
- type: mrr_at_3 |
|
value: 43.091 |
|
- type: mrr_at_5 |
|
value: 45.013999999999996 |
|
- type: ndcg_at_1 |
|
value: 33.256 |
|
- type: ndcg_at_10 |
|
value: 51.403 |
|
- type: ndcg_at_100 |
|
value: 55.706999999999994 |
|
- type: ndcg_at_1000 |
|
value: 56.586000000000006 |
|
- type: ndcg_at_3 |
|
value: 43.559 |
|
- type: ndcg_at_5 |
|
value: 47.426 |
|
- type: precision_at_1 |
|
value: 33.256 |
|
- type: precision_at_10 |
|
value: 8.540000000000001 |
|
- type: precision_at_100 |
|
value: 1.093 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 19.834 |
|
- type: precision_at_5 |
|
value: 14.143 |
|
- type: recall_at_1 |
|
value: 29.537999999999997 |
|
- type: recall_at_10 |
|
value: 71.5 |
|
- type: recall_at_100 |
|
value: 90.25 |
|
- type: recall_at_1000 |
|
value: 96.82600000000001 |
|
- type: recall_at_3 |
|
value: 51.108 |
|
- type: recall_at_5 |
|
value: 60.006 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.526 |
|
- type: map_at_10 |
|
value: 84.342 |
|
- type: map_at_100 |
|
value: 84.985 |
|
- type: map_at_1000 |
|
value: 85.003 |
|
- type: map_at_3 |
|
value: 81.472 |
|
- type: map_at_5 |
|
value: 83.292 |
|
- type: mrr_at_1 |
|
value: 81.17 |
|
- type: mrr_at_10 |
|
value: 87.33999999999999 |
|
- type: mrr_at_100 |
|
value: 87.445 |
|
- type: mrr_at_1000 |
|
value: 87.446 |
|
- type: mrr_at_3 |
|
value: 86.387 |
|
- type: mrr_at_5 |
|
value: 87.042 |
|
- type: ndcg_at_1 |
|
value: 81.19 |
|
- type: ndcg_at_10 |
|
value: 88.088 |
|
- type: ndcg_at_100 |
|
value: 89.35 |
|
- type: ndcg_at_1000 |
|
value: 89.462 |
|
- type: ndcg_at_3 |
|
value: 85.319 |
|
- type: ndcg_at_5 |
|
value: 86.858 |
|
- type: precision_at_1 |
|
value: 81.19 |
|
- type: precision_at_10 |
|
value: 13.33 |
|
- type: precision_at_100 |
|
value: 1.528 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.31 |
|
- type: precision_at_5 |
|
value: 24.512 |
|
- type: recall_at_1 |
|
value: 70.526 |
|
- type: recall_at_10 |
|
value: 95.166 |
|
- type: recall_at_100 |
|
value: 99.479 |
|
- type: recall_at_1000 |
|
value: 99.984 |
|
- type: recall_at_3 |
|
value: 87.124 |
|
- type: recall_at_5 |
|
value: 91.53 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 45.049073872893494 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 55.13810914528368 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.593 |
|
- type: map_at_10 |
|
value: 10.907 |
|
- type: map_at_100 |
|
value: 12.888 |
|
- type: map_at_1000 |
|
value: 13.167000000000002 |
|
- type: map_at_3 |
|
value: 7.936 |
|
- type: map_at_5 |
|
value: 9.31 |
|
- type: mrr_at_1 |
|
value: 22.7 |
|
- type: mrr_at_10 |
|
value: 32.509 |
|
- type: mrr_at_100 |
|
value: 33.69 |
|
- type: mrr_at_1000 |
|
value: 33.747 |
|
- type: mrr_at_3 |
|
value: 29.599999999999998 |
|
- type: mrr_at_5 |
|
value: 31.155 |
|
- type: ndcg_at_1 |
|
value: 22.7 |
|
- type: ndcg_at_10 |
|
value: 18.445 |
|
- type: ndcg_at_100 |
|
value: 26.241999999999997 |
|
- type: ndcg_at_1000 |
|
value: 31.409 |
|
- type: ndcg_at_3 |
|
value: 17.864 |
|
- type: ndcg_at_5 |
|
value: 15.232999999999999 |
|
- type: precision_at_1 |
|
value: 22.7 |
|
- type: precision_at_10 |
|
value: 9.43 |
|
- type: precision_at_100 |
|
value: 2.061 |
|
- type: precision_at_1000 |
|
value: 0.331 |
|
- type: precision_at_3 |
|
value: 16.467000000000002 |
|
- type: precision_at_5 |
|
value: 13.08 |
|
- type: recall_at_1 |
|
value: 4.593 |
|
- type: recall_at_10 |
|
value: 19.115 |
|
- type: recall_at_100 |
|
value: 41.82 |
|
- type: recall_at_1000 |
|
value: 67.167 |
|
- type: recall_at_3 |
|
value: 9.983 |
|
- type: recall_at_5 |
|
value: 13.218 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.94432059816452 |
|
- type: cos_sim_spearman |
|
value: 79.19993315048852 |
|
- type: euclidean_pearson |
|
value: 72.43261099671753 |
|
- type: euclidean_spearman |
|
value: 71.51531114998619 |
|
- type: manhattan_pearson |
|
value: 71.83604124130447 |
|
- type: manhattan_spearman |
|
value: 71.24460392842295 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.25401068481673 |
|
- type: cos_sim_spearman |
|
value: 74.5249604699309 |
|
- type: euclidean_pearson |
|
value: 71.1324859629043 |
|
- type: euclidean_spearman |
|
value: 58.77041705276752 |
|
- type: manhattan_pearson |
|
value: 71.01471521586141 |
|
- type: manhattan_spearman |
|
value: 58.69949381017865 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.85731544223766 |
|
- type: cos_sim_spearman |
|
value: 83.15607264736185 |
|
- type: euclidean_pearson |
|
value: 75.8803249521361 |
|
- type: euclidean_spearman |
|
value: 76.4862168799065 |
|
- type: manhattan_pearson |
|
value: 75.80451454386811 |
|
- type: manhattan_spearman |
|
value: 76.35986831074699 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.40669043798857 |
|
- type: cos_sim_spearman |
|
value: 78.08686090667834 |
|
- type: euclidean_pearson |
|
value: 74.48574712193803 |
|
- type: euclidean_spearman |
|
value: 70.79423012045118 |
|
- type: manhattan_pearson |
|
value: 74.39099211477354 |
|
- type: manhattan_spearman |
|
value: 70.73135427277684 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.03027014209859 |
|
- type: cos_sim_spearman |
|
value: 86.91082847840946 |
|
- type: euclidean_pearson |
|
value: 69.13187603971996 |
|
- type: euclidean_spearman |
|
value: 70.0370035340552 |
|
- type: manhattan_pearson |
|
value: 69.2586635812031 |
|
- type: manhattan_spearman |
|
value: 70.18638387118486 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.41190748361883 |
|
- type: cos_sim_spearman |
|
value: 83.64850851235231 |
|
- type: euclidean_pearson |
|
value: 71.60523243575282 |
|
- type: euclidean_spearman |
|
value: 72.26134033805099 |
|
- type: manhattan_pearson |
|
value: 71.50771482066683 |
|
- type: manhattan_spearman |
|
value: 72.13707967973161 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 90.42838477648627 |
|
- type: cos_sim_spearman |
|
value: 90.15798155439076 |
|
- type: euclidean_pearson |
|
value: 77.09619972244516 |
|
- type: euclidean_spearman |
|
value: 75.5953488548861 |
|
- type: manhattan_pearson |
|
value: 77.36892406451771 |
|
- type: manhattan_spearman |
|
value: 75.76625156149356 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 65.76151154879307 |
|
- type: cos_sim_spearman |
|
value: 64.8846800918359 |
|
- type: euclidean_pearson |
|
value: 50.23302700257155 |
|
- type: euclidean_spearman |
|
value: 58.89455187289583 |
|
- type: manhattan_pearson |
|
value: 50.05498582284945 |
|
- type: manhattan_spearman |
|
value: 58.75893793871576 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.72381109169437 |
|
- type: cos_sim_spearman |
|
value: 84.59820928231167 |
|
- type: euclidean_pearson |
|
value: 74.85450857429493 |
|
- type: euclidean_spearman |
|
value: 73.83634052565915 |
|
- type: manhattan_pearson |
|
value: 74.97349743979106 |
|
- type: manhattan_spearman |
|
value: 73.9636470375881 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 80.96736259172798 |
|
- type: mrr |
|
value: 94.48378781712114 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 46.344 |
|
- type: map_at_10 |
|
value: 54.962 |
|
- type: map_at_100 |
|
value: 55.772 |
|
- type: map_at_1000 |
|
value: 55.81700000000001 |
|
- type: map_at_3 |
|
value: 51.832 |
|
- type: map_at_5 |
|
value: 53.718999999999994 |
|
- type: mrr_at_1 |
|
value: 49.0 |
|
- type: mrr_at_10 |
|
value: 56.721 |
|
- type: mrr_at_100 |
|
value: 57.287 |
|
- type: mrr_at_1000 |
|
value: 57.330000000000005 |
|
- type: mrr_at_3 |
|
value: 54.056000000000004 |
|
- type: mrr_at_5 |
|
value: 55.822 |
|
- type: ndcg_at_1 |
|
value: 49.0 |
|
- type: ndcg_at_10 |
|
value: 59.757000000000005 |
|
- type: ndcg_at_100 |
|
value: 63.149 |
|
- type: ndcg_at_1000 |
|
value: 64.43100000000001 |
|
- type: ndcg_at_3 |
|
value: 54.105000000000004 |
|
- type: ndcg_at_5 |
|
value: 57.196999999999996 |
|
- type: precision_at_1 |
|
value: 49.0 |
|
- type: precision_at_10 |
|
value: 8.200000000000001 |
|
- type: precision_at_100 |
|
value: 1.0070000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 20.889 |
|
- type: precision_at_5 |
|
value: 14.399999999999999 |
|
- type: recall_at_1 |
|
value: 46.344 |
|
- type: recall_at_10 |
|
value: 72.722 |
|
- type: recall_at_100 |
|
value: 88.167 |
|
- type: recall_at_1000 |
|
value: 98.333 |
|
- type: recall_at_3 |
|
value: 57.994 |
|
- type: recall_at_5 |
|
value: 65.506 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.83366336633664 |
|
- type: cos_sim_ap |
|
value: 96.09329747251944 |
|
- type: cos_sim_f1 |
|
value: 91.66255550074001 |
|
- type: cos_sim_precision |
|
value: 90.45764362220059 |
|
- type: cos_sim_recall |
|
value: 92.9 |
|
- type: dot_accuracy |
|
value: 99.32871287128712 |
|
- type: dot_ap |
|
value: 63.95436644147969 |
|
- type: dot_f1 |
|
value: 60.61814556331008 |
|
- type: dot_precision |
|
value: 60.437375745526836 |
|
- type: dot_recall |
|
value: 60.8 |
|
- type: euclidean_accuracy |
|
value: 99.66534653465347 |
|
- type: euclidean_ap |
|
value: 85.85143979761818 |
|
- type: euclidean_f1 |
|
value: 81.57033805888769 |
|
- type: euclidean_precision |
|
value: 89.68824940047962 |
|
- type: euclidean_recall |
|
value: 74.8 |
|
- type: manhattan_accuracy |
|
value: 99.65742574257426 |
|
- type: manhattan_ap |
|
value: 85.55693926348405 |
|
- type: manhattan_f1 |
|
value: 81.13804004214963 |
|
- type: manhattan_precision |
|
value: 85.74610244988864 |
|
- type: manhattan_recall |
|
value: 77.0 |
|
- type: max_accuracy |
|
value: 99.83366336633664 |
|
- type: max_ap |
|
value: 96.09329747251944 |
|
- type: max_f1 |
|
value: 91.66255550074001 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 45.23573510003245 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 33.37478638401161 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 50.375920467392476 |
|
- type: mrr |
|
value: 51.17302223919871 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.768864092288343 |
|
- type: cos_sim_spearman |
|
value: 29.854278347043266 |
|
- type: dot_pearson |
|
value: 20.51281723837505 |
|
- type: dot_spearman |
|
value: 21.799102540913665 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.2 |
|
- type: map_at_10 |
|
value: 1.202 |
|
- type: map_at_100 |
|
value: 6.729 |
|
- type: map_at_1000 |
|
value: 15.928 |
|
- type: map_at_3 |
|
value: 0.492 |
|
- type: map_at_5 |
|
value: 0.712 |
|
- type: mrr_at_1 |
|
value: 76.0 |
|
- type: mrr_at_10 |
|
value: 84.75 |
|
- type: mrr_at_100 |
|
value: 84.75 |
|
- type: mrr_at_1000 |
|
value: 84.75 |
|
- type: mrr_at_3 |
|
value: 83.0 |
|
- type: mrr_at_5 |
|
value: 84.5 |
|
- type: ndcg_at_1 |
|
value: 71.0 |
|
- type: ndcg_at_10 |
|
value: 57.253 |
|
- type: ndcg_at_100 |
|
value: 44.383 |
|
- type: ndcg_at_1000 |
|
value: 38.666 |
|
- type: ndcg_at_3 |
|
value: 64.324 |
|
- type: ndcg_at_5 |
|
value: 60.791 |
|
- type: precision_at_1 |
|
value: 76.0 |
|
- type: precision_at_10 |
|
value: 59.599999999999994 |
|
- type: precision_at_100 |
|
value: 45.440000000000005 |
|
- type: precision_at_1000 |
|
value: 17.458000000000002 |
|
- type: precision_at_3 |
|
value: 69.333 |
|
- type: precision_at_5 |
|
value: 63.2 |
|
- type: recall_at_1 |
|
value: 0.2 |
|
- type: recall_at_10 |
|
value: 1.4949999999999999 |
|
- type: recall_at_100 |
|
value: 10.266 |
|
- type: recall_at_1000 |
|
value: 35.853 |
|
- type: recall_at_3 |
|
value: 0.5349999999999999 |
|
- type: recall_at_5 |
|
value: 0.8109999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.0140000000000002 |
|
- type: map_at_10 |
|
value: 8.474 |
|
- type: map_at_100 |
|
value: 14.058000000000002 |
|
- type: map_at_1000 |
|
value: 15.381 |
|
- type: map_at_3 |
|
value: 4.508 |
|
- type: map_at_5 |
|
value: 5.87 |
|
- type: mrr_at_1 |
|
value: 22.448999999999998 |
|
- type: mrr_at_10 |
|
value: 37.242 |
|
- type: mrr_at_100 |
|
value: 38.291 |
|
- type: mrr_at_1000 |
|
value: 38.311 |
|
- type: mrr_at_3 |
|
value: 32.312999999999995 |
|
- type: mrr_at_5 |
|
value: 34.762 |
|
- type: ndcg_at_1 |
|
value: 20.408 |
|
- type: ndcg_at_10 |
|
value: 20.729 |
|
- type: ndcg_at_100 |
|
value: 33.064 |
|
- type: ndcg_at_1000 |
|
value: 44.324999999999996 |
|
- type: ndcg_at_3 |
|
value: 21.251 |
|
- type: ndcg_at_5 |
|
value: 20.28 |
|
- type: precision_at_1 |
|
value: 22.448999999999998 |
|
- type: precision_at_10 |
|
value: 18.98 |
|
- type: precision_at_100 |
|
value: 7.224 |
|
- type: precision_at_1000 |
|
value: 1.471 |
|
- type: precision_at_3 |
|
value: 22.448999999999998 |
|
- type: precision_at_5 |
|
value: 20.816000000000003 |
|
- type: recall_at_1 |
|
value: 2.0140000000000002 |
|
- type: recall_at_10 |
|
value: 13.96 |
|
- type: recall_at_100 |
|
value: 44.187 |
|
- type: recall_at_1000 |
|
value: 79.328 |
|
- type: recall_at_3 |
|
value: 5.345 |
|
- type: recall_at_5 |
|
value: 7.979 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 69.1312 |
|
- type: ap |
|
value: 12.606776505497608 |
|
- type: f1 |
|
value: 52.4112415600534 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 58.16072439162422 |
|
- type: f1 |
|
value: 58.29152785435414 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 40.421119289825924 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 85.48012159504083 |
|
- type: cos_sim_ap |
|
value: 72.31974877212102 |
|
- type: cos_sim_f1 |
|
value: 67.96846573681019 |
|
- type: cos_sim_precision |
|
value: 62.89562289562289 |
|
- type: cos_sim_recall |
|
value: 73.93139841688654 |
|
- type: dot_accuracy |
|
value: 78.52416999463551 |
|
- type: dot_ap |
|
value: 43.65271285411479 |
|
- type: dot_f1 |
|
value: 46.94641449960599 |
|
- type: dot_precision |
|
value: 37.456774599182644 |
|
- type: dot_recall |
|
value: 62.875989445910285 |
|
- type: euclidean_accuracy |
|
value: 83.90057817249806 |
|
- type: euclidean_ap |
|
value: 65.96278727778665 |
|
- type: euclidean_f1 |
|
value: 63.35733232284957 |
|
- type: euclidean_precision |
|
value: 60.770535497940394 |
|
- type: euclidean_recall |
|
value: 66.17414248021109 |
|
- type: manhattan_accuracy |
|
value: 83.96614412588663 |
|
- type: manhattan_ap |
|
value: 66.03670273156699 |
|
- type: manhattan_f1 |
|
value: 63.49128406579917 |
|
- type: manhattan_precision |
|
value: 59.366391184573 |
|
- type: manhattan_recall |
|
value: 68.23218997361478 |
|
- type: max_accuracy |
|
value: 85.48012159504083 |
|
- type: max_ap |
|
value: 72.31974877212102 |
|
- type: max_f1 |
|
value: 67.96846573681019 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.97038848139093 |
|
- type: cos_sim_ap |
|
value: 85.982764495556 |
|
- type: cos_sim_f1 |
|
value: 78.73283281450284 |
|
- type: cos_sim_precision |
|
value: 75.07857791436754 |
|
- type: cos_sim_recall |
|
value: 82.7610101632276 |
|
- type: dot_accuracy |
|
value: 83.21108394458028 |
|
- type: dot_ap |
|
value: 70.97956937273386 |
|
- type: dot_f1 |
|
value: 66.53083038279111 |
|
- type: dot_precision |
|
value: 58.7551622418879 |
|
- type: dot_recall |
|
value: 76.67847243609486 |
|
- type: euclidean_accuracy |
|
value: 84.31520937633407 |
|
- type: euclidean_ap |
|
value: 74.67323411319909 |
|
- type: euclidean_f1 |
|
value: 67.21935410935676 |
|
- type: euclidean_precision |
|
value: 65.82773636430733 |
|
- type: euclidean_recall |
|
value: 68.67108099784416 |
|
- type: manhattan_accuracy |
|
value: 84.35013777312066 |
|
- type: manhattan_ap |
|
value: 74.66508905354597 |
|
- type: manhattan_f1 |
|
value: 67.28264162375038 |
|
- type: manhattan_precision |
|
value: 66.19970193740686 |
|
- type: manhattan_recall |
|
value: 68.40160147828766 |
|
- type: max_accuracy |
|
value: 88.97038848139093 |
|
- type: max_ap |
|
value: 85.982764495556 |
|
- type: max_f1 |
|
value: 78.73283281450284 |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px"> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a></b> |
|
</p> |
|
|
|
|
|
## Intented Usage & Model Info |
|
|
|
`jina-embedding-l-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. |
|
This dataset consists of 380 million pairs of sentences, which include both query-document pairs. |
|
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. |
|
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. |
|
|
|
The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. |
|
|
|
With a size of 330 million parameters, |
|
the model enables single-gpu inference while delivering better performance than our small and base model. |
|
Additionally, we provide the following options: |
|
|
|
- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters. |
|
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters |
|
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters. |
|
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters **(you are here)**. |
|
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon). |
|
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon). |
|
|
|
## Data & Parameters |
|
|
|
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224). |
|
|
|
## Metrics |
|
|
|
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |
|
|
|
|Name|param |dimension| |
|
|------------------------------|-----|------| |
|
|all-minilm-l6-v2|23m |384| |
|
|all-mpnet-base-v2 |110m |768| |
|
|ada-embedding-002|Unknown/OpenAI API |1536| |
|
|jina-embedding-t-en-v1|14m |312| |
|
|jina-embedding-s-en-v1|35m |512| |
|
|jina-embedding-b-en-v1|110m |768| |
|
|jina-embedding-l-en-v1|330m |1024| |
|
|
|
|
|
|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |
|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |
|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |
|
|all-mpnet-base-v2|0.726|**0.835**|0.78 |0.857|0.8 |**0.906**|0.513 |0.875|0.656 | |
|
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** | |
|
|jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 | |
|
|jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 | |
|
|jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 | |
|
|jina-embedding-l-en-v1|0.745|0.832|**0.781**|**0.869**|0.837|0.902|0.573 |**0.881**|0.598 | |
|
|
|
## Usage |
|
|
|
Use with Jina AI Finetuner |
|
|
|
```python |
|
!pip install finetuner |
|
import finetuner |
|
|
|
model = finetuner.build_model('jinaai/jina-embedding-l-en-v1') |
|
embeddings = finetuner.encode( |
|
model=model, |
|
data=['how is the weather today', 'What is the current weather like today?'] |
|
) |
|
print(finetuner.cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
Use with sentence-transformers: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = ['how is the weather today', 'What is the current weather like today?'] |
|
|
|
model = SentenceTransformer('jinaai/jina-embedding-b-en-v1') |
|
embeddings = model.encode(sentences) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
## Fine-tuning |
|
|
|
Please consider [Finetuner](https://github.com/jina-ai/finetuner). |
|
|
|
## Plans |
|
|
|
1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length. |
|
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`. |
|
|
|
## Contact |
|
|
|
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. |
|
|
|
## Citation |
|
|
|
If you find Jina Embeddings useful in your research, please cite the following paper: |
|
|
|
``` latex |
|
@misc{günther2023jina, |
|
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models}, |
|
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao}, |
|
year={2023}, |
|
eprint={2307.11224}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |