File size: 61,857 Bytes
5596a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
---
language:
- code
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:94500
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Primary CD8+ T cells from a subject identified as CL-MCRL, exposed
    to the GPR epitope with a dpi (days post-infection) of 87.5.
  sentences:
  - Cancer cell line (CCL23) derived from a carcinoma patient.
  - Primary CD34+ human cells in three-phase in vitro culture, isolated on day 13,
    with GG1dd zf vector transduction.
  - 23-year-old primary nonETP leukemic blasts from bone marrow.
- source_sentence: Hematopoietic cells with PI-AnnexinV-GFP+CD33+ phenotype from a
    xenograft strain NRG-3GS.
  sentences:
  - H9 embryonic stem cells treated with recombinant Wnt3a for 8 hours in culture.
  - iCell Hepatocytes that have been treated with 075\_OLBO\_10 in a study involving
    BO class and dose 10.
  - 48 hour treatment of colorectal carcinoma cell line HCT116 (colorectal cancer)
    with control treatment.
- source_sentence: Memory B cells derived from a female thoracic lymph node, obtained
    from a donor in their seventh decade.
  sentences:
  - Neuron cell type from the Pulvinar of thalamus, derived from a 42-year-old human
    individual.
  - Germinal center B cell derived from the tonsil tissue of a 3-year-old male with
    recurrent tonsillitis.
  - B cell sample from a 55-year old female Asian individual with managed systemic
    lupus erythematosus (SLE). The cell was derived from peripheral blood mononuclear
    cells (PBMCs).
- source_sentence: Pericyte cells, part of the smooth muscle lineage, extracted from
    the transition zone of a 74-year-old human prostate.
  sentences:
  - A CD8-positive, alpha-beta memory T cell, CD45RO-positive, specifically identified
    as Tem/Effector cytotoxic T cells, as determined by CellTypist prediction. The
    cell was obtained from the lung tissue of a female individual in her eighth decade.
  - CD4-positive, alpha-beta T cell sample taken from a 53-year old female Asian individual
    with managed systemic lupus erythematosus (SLE).
  - Natural killer cell from a 32-year old female of European descent with managed
    systemic lupus erythematosus (SLE).
- source_sentence: Sample is a basal cell of prostate epithelium, taken from the transition
    zone of the prostate gland in a 72-year old male. It belongs to the Epithelia
    lineage and Population BE.
  sentences:
  - Neuron cell type from a 42-year old male cerebral cortex tissue, specifically
    from the rostral gyrus dorsal division of MFC A32, classified as Deep-layer corticothalamic
    and 6b.
  - Dendritic cell from the transition zone of prostate of a 29-year-old male, specifically
    from the EREG+ population.
  - Neuron from the mediodorsal nucleus of thalamus, which is part of the medial nuclear
    complex of thalamus (MNC) in the thalamic complex, taken from a 42-year-old male
    human donor with European ethnicity. The neuron belongs to the Thalamic excitatory
    supercluster.
datasets:
- jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation
- jo-mengr/geo_70k_multiplets_natural_language_annotation
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy
      value: 0.9402857422828674
      name: Cosine Accuracy
    - type: cosine_accuracy
      value: 0.9371428489685059
      name: Cosine Accuracy
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) and [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) datasets. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** None tokens
- **Output Dimensionality:** None dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation)
    - [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation)
- **Language:** code
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): MMContextEncoder(
    (text_encoder): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(28996, 768, padding_idx=0)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSdpaSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
    (text_adapter): AdapterModule(
      (net): Sequential(
        (0): Linear(in_features=768, out_features=512, bias=True)
        (1): ReLU(inplace=True)
        (2): Linear(in_features=512, out_features=2048, bias=True)
        (3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (omics_adapter): AdapterModule(
      (net): Sequential(
        (0): Linear(in_features=64, out_features=512, bias=True)
        (1): ReLU(inplace=True)
        (2): Linear(in_features=512, out_features=2048, bias=True)
        (3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jo-mengr/mmcontext-100k-natural_language_annotation-pca-1024")
# Run inference
sentences = [
    'Sample is a basal cell of prostate epithelium, taken from the transition zone of the prostate gland in a 72-year old male. It belongs to the Epithelia lineage and Population BE.',
    'Neuron cell type from a 42-year old male cerebral cortex tissue, specifically from the rostral gyrus dorsal division of MFC A32, classified as Deep-layer corticothalamic and 6b.',
    'Neuron from the mediodorsal nucleus of thalamus, which is part of the medial nuclear complex of thalamus (MNC) in the thalamic complex, taken from a 42-year-old male human donor with European ethnicity. The neuron belongs to the Thalamic excitatory supercluster.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9403** |

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9371** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation

* Dataset: [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) at [a6241c4](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation/tree/a6241c46b7e108ff9106fd7a1838117096e2c3c6)
* Size: 31,500 training samples
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | anndata_ref        | positive                                                                                         | negative_1                                                                                       | negative_2         |
  |:--------|:-------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
  | type    | dict               | string                                                                                           | string                                                                                           | dict               |
  | details | <ul><li></li></ul> | <ul><li>min: 53 characters</li><li>mean: 163.04 characters</li><li>max: 743 characters</li></ul> | <ul><li>min: 43 characters</li><li>mean: 163.42 characters</li><li>max: 609 characters</li></ul> | <ul><li></li></ul> |
* Samples:
  | anndata_ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | positive                                                                                                                                              | negative_1                                                                                                                                                                   | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_1f1c5c14-5949-4c81-b28e-b272e271b672_570'}</code>   | <code>Stromal cell of ovary, specifically Stroma-2, from a human adult female individual, in S phase of the cell cycle.</code>                        | <code>Neuron cell type from a 50-year-old male human thalamic complex, specifically from the ventral anterior nucleus of thalamus within the lateral nuclear complex.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_19663'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_34872'}</code> | <code>CD8-positive, alpha-beta T cell sample from a 52-year old Asian female with managed systemic lupus erythematosus (SLE).</code>                  | <code>Mucosal invariant T cell derived from the spleen of a female in her seventies.</code>                                                                                  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_74cff64f-9da9-4b2a-9b3b-8a04a1598040_4145'}</code>  |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_74cff64f-9da9-4b2a-9b3b-8a04a1598040_7321'}</code>  | <code>Hofbauer cell derived from the decidua basalis tissue of a female individual at 8 post conception week (8_PCW). The sample is a nucleus.</code> | <code>Regulatory T cell derived from a lymph node of a male individual with advanced non-small cell lung cancer (NSCLC), stage IV, who has a history of smoking.</code>      | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_5a73f63f-18a2-49b5-b431-2c469c41a41b_163'}</code>   |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### geo_70k_multiplets_natural_language_annotation

* Dataset: [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) at [449eb79](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation/tree/449eb79e41b05af4d3e32900144411963f626f8c)
* Size: 63,000 training samples
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | anndata_ref        | positive                                                                                        | negative_1                                                                                       | negative_2         |
  |:--------|:-------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
  | type    | dict               | string                                                                                          | string                                                                                           | dict               |
  | details | <ul><li></li></ul> | <ul><li>min: 21 characters</li><li>mean: 139.4 characters</li><li>max: 696 characters</li></ul> | <ul><li>min: 23 characters</li><li>mean: 142.09 characters</li><li>max: 705 characters</li></ul> | <ul><li></li></ul> |
* Samples:
  | anndata_ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | positive                                                                                                                                                     | negative_1                                                                                                                                                     | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX3111576'}</code> | <code>198Z\_MSCB-067 sample contains primary cells that are neuronal progenitors from patient type WB\_1.</code>                                             | <code>31-year-old female Caucasian with ntm disease provided a whole blood sample on July 11, 2016. The baseline FEVPP was  89.74 and FVCpp was 129.41.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX6591734'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX7834244'}</code> | <code>CD8+ T cells from a healthy skin sample, labeled C4, from plate rep1, well E6, sequencing batch b7, which passed QC, and clustered as 2\_Resid.</code> | <code>6-week-old (PCW6) neuronal epithelium tissue from donor HSB325, cultured using C1-72 chip.</code>                                                        | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX2440281'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX3112138'}</code> | <code>201Z\_MSCB-083 is a sample of primary neuronal progenitor cells from patient MD1 with no reported treatment.</code>                                    | <code>48-hour sample from HPV-negative UPCI:SCC131 cell line, a head and neck squamous cell carcinoma (HNSCC) cell line, that has not been irradiated.</code>  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX7448263'}</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Datasets

#### cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation

* Dataset: [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) at [a6241c4](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation/tree/a6241c46b7e108ff9106fd7a1838117096e2c3c6)
* Size: 3,500 evaluation samples
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | anndata_ref        | positive                                                                                         | negative_1                                                                                       | negative_2         |
  |:--------|:-------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
  | type    | dict               | string                                                                                           | string                                                                                           | dict               |
  | details | <ul><li></li></ul> | <ul><li>min: 51 characters</li><li>mean: 168.27 characters</li><li>max: 829 characters</li></ul> | <ul><li>min: 57 characters</li><li>mean: 174.27 characters</li><li>max: 804 characters</li></ul> | <ul><li></li></ul> |
* Samples:
  | anndata_ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | positive                                                                                                                                                                                                                                                                                                                                         | negative_1                                                                                                                                                                             | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_842c6f5d-4a94-4eef-8510-8c792d1124bc_6822'}</code> | <code>Non-classical monocyte cell type, derived from a fresh breast tissue sample of an African American female donor with low breast density, obese BMI, and premenopausal status. The cell was obtained through resection procedure and analyzed using single-cell transcriptomics as part of the Human Breast Cell Atlas (HBCA) study.</code> | <code>Plasma cells derived from gingival tissue of a 39-year-old female.</code>                                                                                                        | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_23461'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_b46237d1-19c6-4af2-9335-9854634bad16_9825'}</code> | <code>Enteric neuron cells derived from the ileum tissue at Carnegie stage 22.</code>                                                                                                                                                                                                                                                            | <code>Ciliated cell from the trachea of a 6-12 year-old European male with no SARS-CoV-2 infection, who is a non-smoker and healthy.</code>                                            | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_2872f4b0-b171-46e2-abc6-befcf6de6306_2871'}</code>  |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_d7d7e89c-c93a-422d-8958-9b4a90b69558_4209'}</code> | <code>Activated CD16-positive, CD56-dim natural killer cell taken from a 26-year-old male, activated with CD3, and found to be in G1 phase.</code>                                                                                                                                                                                               | <code>CD8-positive, alpha-beta thymocyte cell type derived from a 74-year-old male human with European self-reported ethnicity, located in the transition zone of the prostate.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_535e9336-2d8d-43c3-944d-bcbebe20df8a_18'}</code>    |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### geo_70k_multiplets_natural_language_annotation

* Dataset: [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) at [449eb79](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation/tree/449eb79e41b05af4d3e32900144411963f626f8c)
* Size: 7,000 evaluation samples
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | anndata_ref        | positive                                                                                        | negative_1                                                                                       | negative_2         |
  |:--------|:-------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
  | type    | dict               | string                                                                                          | string                                                                                           | dict               |
  | details | <ul><li></li></ul> | <ul><li>min: 22 characters</li><li>mean: 138.7 characters</li><li>max: 702 characters</li></ul> | <ul><li>min: 22 characters</li><li>mean: 131.79 characters</li><li>max: 702 characters</li></ul> | <ul><li></li></ul> |
* Samples:
  | anndata_ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | positive                                                                                                                        | negative_1                                                                                                                                      | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX16033546'}</code> | <code>A549 lung adenocarcinoma cell line with ectopic expression of TPK1 p.G48C mutation.</code>                                | <code>3 days after the 4th immunization, blood sample from donor 1033 with low antibody-dependent cellular phagocytosis (ADCP) category.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX10356703'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX8241199'}</code>  | <code>Human fibroblasts at the D7 time point during reprogramming into induced pluripotent stem cells (iPSCs) or hiPSCs.</code> | <code>CD14+ monocytes from a healthy control participant (ID 2015).</code>                                                                      | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX14140416'}</code> |
  | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX17834359'}</code> | <code>Whole blood sample from subject HRV15-017, collected at day 1 in the afternoon.</code>                                    | <code>59 year old male bronchial epithelial cells with 39 pack years of smoking history and imaging cluster 1.</code>                           | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX5429074'}</code>  |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | cellxgene pseudo bulk 35k multiplets natural language annotation loss | geo 70k multiplets natural language annotation loss | cosine_accuracy |
|:------:|:----:|:-------------:|:---------------------------------------------------------------------:|:---------------------------------------------------:|:---------------:|
| 0.1351 | 100  | -             | 19.5545                                                               | 19.6050                                             | 0.5656          |
| 0.2703 | 200  | 17.2819       | 19.4888                                                               | 17.2415                                             | 0.7261          |
| 0.4054 | 300  | -             | 17.2527                                                               | 14.3099                                             | 0.7684          |
| 0.5405 | 400  | 13.4122       | 13.1462                                                               | 13.4371                                             | 0.7976          |
| 0.6757 | 500  | -             | 12.6305                                                               | 9.3601                                              | 0.8474          |
| 0.8108 | 600  | 8.3246        | 11.1233                                                               | 7.6021                                              | 0.8787          |
| 0.9459 | 700  | -             | 8.5871                                                                | 7.6461                                              | 0.8980          |
| 1.0811 | 800  | 6.1203        | 7.0774                                                                | 7.1605                                              | 0.9046          |
| 1.2162 | 900  | -             | 6.0461                                                                | 6.7694                                              | 0.9076          |
| 1.3514 | 1000 | 5.1622        | 6.1759                                                                | 6.0741                                              | 0.9166          |
| 1.4865 | 1100 | -             | 6.6497                                                                | 5.3305                                              | 0.9269          |
| 1.6216 | 1200 | 4.7346        | 7.6330                                                                | 4.9083                                              | 0.9324          |
| 1.7568 | 1300 | -             | 6.5700                                                                | 4.8609                                              | 0.9349          |
| 1.8919 | 1400 | 4.4577        | 6.9249                                                                | 4.6155                                              | 0.9401          |
| 2.0270 | 1500 | -             | 5.4120                                                                | 5.0721                                              | 0.9367          |
| 2.1622 | 1600 | 4.2281        | 6.3842                                                                | 4.6481                                              | 0.9407          |
| 2.2973 | 1700 | -             | 5.6970                                                                | 4.9588                                              | 0.9370          |
| 2.4324 | 1800 | 4.2392        | 6.3306                                                                | 4.6888                                              | 0.9407          |
| 2.5676 | 1900 | -             | 5.3909                                                                | 5.0415                                              | 0.9364          |
| 2.7027 | 2000 | 4.2237        | 6.0779                                                                | 4.7476                                              | 0.9394          |
| 2.8378 | 2100 | -             | 5.3631                                                                | 5.0280                                              | 0.9379          |
| 2.9730 | 2200 | 4.2215        | 5.5800                                                                | 4.9418                                              | 0.9373          |
| 3.1081 | 2300 | -             | 6.3898                                                                | 4.6718                                              | 0.9400          |
| 3.2432 | 2400 | 4.1984        | 4.7118                                                                | 5.4301                                              | 0.9313          |
| 3.3784 | 2500 | -             | 7.2266                                                                | 4.5063                                              | 0.9419          |
| 3.5135 | 2600 | 4.2538        | 8.1464                                                                | 4.4121                                              | 0.9426          |
| 3.6486 | 2700 | -             | 6.5866                                                                | 4.6253                                              | 0.9409          |
| 3.7838 | 2800 | 4.2186        | 5.8797                                                                | 4.8671                                              | 0.9380          |
| 3.9189 | 2900 | -             | 5.5591                                                                | 4.9559                                              | 0.9377          |
| 4.0541 | 3000 | 4.2064        | 6.3420                                                                | 4.7167                                              | 0.9413          |
| 4.1892 | 3100 | -             | 5.9561                                                                | 4.8190                                              | 0.9387          |
| 4.3243 | 3200 | 4.2248        | 6.3844                                                                | 4.6827                                              | 0.9410          |
| 4.4595 | 3300 | -             | 7.1522                                                                | 4.5193                                              | 0.9421          |
| 4.5946 | 3400 | 4.2263        | 4.8333                                                                | 5.3410                                              | 0.9331          |
| 4.7297 | 3500 | -             | 4.5820                                                                | 5.5334                                              | 0.9306          |
| 4.8649 | 3600 | 4.2472        | 6.8254                                                                | 4.5512                                              | 0.9413          |
| 5.0    | 3700 | -             | 6.4904                                                                | 4.6993                                              | 0.9399          |
| 5.1351 | 3800 | 4.1936        | 4.8578                                                                | 5.3678                                              | 0.9344          |
| 5.2703 | 3900 | -             | 6.4530                                                                | 4.6426                                              | 0.9413          |
| 5.4054 | 4000 | 4.2345        | 6.6050                                                                | 4.6684                                              | 0.9409          |
| 5.5405 | 4100 | -             | 4.8690                                                                | 5.3172                                              | 0.9334          |
| 5.6757 | 4200 | 4.2406        | 6.2903                                                                | 4.7100                                              | 0.9404          |
| 5.8108 | 4300 | -             | 6.6273                                                                | 4.6269                                              | 0.9419          |
| 5.9459 | 4400 | 4.2227        | 5.4572                                                                | 5.0365                                              | 0.9370          |
| 6.0811 | 4500 | -             | 5.0242                                                                | 5.2568                                              | 0.9341          |
| 6.2162 | 4600 | 4.1997        | 4.7279                                                                | 5.5242                                              | 0.9316          |
| 6.3514 | 4700 | -             | 5.1846                                                                | 5.2246                                              | 0.9339          |
| 6.4865 | 4800 | 4.2361        | 5.8601                                                                | 4.8249                                              | 0.9381          |
| 6.6216 | 4900 | -             | 6.9398                                                                | 4.5848                                              | 0.9423          |
| 6.7568 | 5000 | 4.2273        | 6.2977                                                                | 4.6921                                              | 0.9406          |
| 6.8919 | 5100 | -             | 6.9737                                                                | 4.5439                                              | 0.9421          |
| 7.0270 | 5200 | 4.2052        | 5.3900                                                                | 5.0873                                              | 0.9370          |
| 7.1622 | 5300 | -             | 6.3929                                                                | 4.6474                                              | 0.9406          |
| 7.2973 | 5400 | 4.2416        | 5.6994                                                                | 4.9590                                              | 0.9371          |
| 7.4324 | 5500 | -             | 6.3184                                                                | 4.6922                                              | 0.9407          |
| 7.5676 | 5600 | 4.2311        | 5.3932                                                                | 5.0403                                              | 0.9363          |
| 7.7027 | 5700 | -             | 6.0781                                                                | 4.7480                                              | 0.9394          |
| 7.8378 | 5800 | 4.229         | 5.3664                                                                | 5.0291                                              | 0.9380          |
| 7.9730 | 5900 | -             | 5.5803                                                                | 4.9391                                              | 0.9371          |


### Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.43.4
- PyTorch: 2.6.0+cu124
- Accelerate: 0.33.0
- Datasets: 2.14.4
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->