|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- roneneldan/TinyStories |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: gpt2_m080_tiny-stories_1024 |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: roneneldan/TinyStories |
|
type: roneneldan/TinyStories |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6787833469368093 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/scads-nlp/morph-gpt_gpt2_tiny-stories/runs/3tjo6ipp) |
|
# gpt2_m080_tiny-stories_1024 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the roneneldan/TinyStories dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2099 |
|
- Accuracy: 0.6788 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------:| |
|
| 2.8882 | 0.0522 | 1000 | 2.4481 | 0.4477 | |
|
| 1.9734 | 0.1043 | 2000 | 1.7975 | 0.5687 | |
|
| 1.7272 | 0.1565 | 3000 | 1.6134 | 0.6017 | |
|
| 1.6087 | 0.2086 | 4000 | 1.5135 | 0.6195 | |
|
| 1.5337 | 0.2608 | 5000 | 1.4512 | 0.6313 | |
|
| 1.4808 | 0.3129 | 6000 | 1.4058 | 0.6399 | |
|
| 1.444 | 0.3651 | 7000 | 1.3705 | 0.6466 | |
|
| 1.4094 | 0.4173 | 8000 | 1.3408 | 0.6524 | |
|
| 1.385 | 0.4694 | 9000 | 1.3191 | 0.6566 | |
|
| 1.364 | 0.5216 | 10000 | 1.2988 | 0.6608 | |
|
| 1.3413 | 0.5737 | 11000 | 1.2813 | 0.6643 | |
|
| 1.3267 | 0.6259 | 12000 | 1.2677 | 0.6669 | |
|
| 1.3161 | 0.6780 | 13000 | 1.2534 | 0.6697 | |
|
| 1.3083 | 0.7302 | 14000 | 1.2439 | 0.6717 | |
|
| 1.2955 | 0.7824 | 15000 | 1.2366 | 0.6731 | |
|
| 1.285 | 0.8345 | 16000 | 1.2262 | 0.6754 | |
|
| 1.2796 | 0.8867 | 17000 | 1.2194 | 0.6767 | |
|
| 1.271 | 0.9388 | 18000 | 1.2133 | 0.6780 | |
|
| 1.2678 | 0.9910 | 19000 | 1.2101 | 0.6787 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|