Quantized to FP8 using llm_compressor

from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier

# Define the model ID for the model you want to quantize
MODEL_ID = "meta-llama/Llama-3.3-70B-Instruct"

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Configure the quantization recipe
recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])

# Apply the quantization algorithm
oneshot(model=model, recipe=recipe)

# Define the directory to save the quantized model
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"

# Save the quantized model and tokenizer
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)

print(f"Quantized model saved to (SAVE_DIR)")
Downloads last month
0
Safetensors
Model size
70.6B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jsbaicenter/Llama-3.3-70B-Instruct-FP8-Dynamic

Quantized
(115)
this model