Visualize in Weights & Biases

jssaluja/wav2vec2-large-mms-1b-all-rajinder_singh-without-separator-epochs-5-test-datasets-10

This model is a fine-tuned version of facebook/mms-1b-all on the jssaluja/rajinder_singh dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3257
  • Wer: 0.3831
  • Wil: 0.5861
  • Mer: 0.3752
  • Cer: 0.0983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 37
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Wil Mer Cer
0.4734 0.5 3774 0.4031 0.4766 0.6882 0.4628 0.1240
0.2468 1.0 7548 0.3815 0.4387 0.6481 0.4236 0.1133
0.2154 1.5 11322 0.3679 0.4268 0.6370 0.4172 0.1104
0.1991 2.0 15096 0.3441 0.4048 0.6138 0.3961 0.1043
0.1849 2.5 18870 0.3545 0.4038 0.6113 0.3948 0.1040
0.1775 3.0 22644 0.3375 0.4057 0.6144 0.3994 0.1033
0.165 3.5 26418 0.3351 0.3950 0.6006 0.3873 0.1002
0.1557 4.0 30192 0.3404 0.3880 0.5910 0.3780 0.1004
0.1461 4.5 33966 0.3288 0.3864 0.5905 0.3782 0.0990
0.14 5.0 37740 0.3257 0.3832 0.5862 0.3753 0.0983

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.2.1+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
965M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jssaluja/wav2vec2-large-mms-1b-all-rajinder_singh-without-separator-epochs-5-test-datasets-10

Finetuned
(280)
this model