mt5-small-finetuned-xlsum-zh-en

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4765
  • Rouge1: 13.6815
  • Rouge2: 1.9963
  • Rougel: 11.1618
  • Rougelsum: 11.196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.179 1.0 175 3.4764 12.6283 1.9745 10.3319 10.3779
3.9528 2.0 350 3.4743 13.3663 1.992 11.0757 11.0275
3.8472 3.0 525 3.4887 12.8037 1.8678 10.3381 10.3357
3.7711 4.0 700 3.4765 13.6815 1.9963 11.1618 11.196
3.7389 5.0 875 3.4853 13.1565 1.9543 10.6958 10.7191
3.7368 6.0 1050 3.4717 13.025 1.9673 10.5016 10.5047
3.7475 7.0 1225 3.4678 12.7763 1.8506 10.3091 10.3242
3.783 8.0 1400 3.4659 12.9145 1.9185 10.3757 10.4012

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.2.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for kani1021/mt5-small-finetuned-xlsum-zh-en

Base model

google/mt5-small
Finetuned
(440)
this model