pofce's picture
Update README.md
f38ccbd verified
metadata
license: apache-2.0
language:
  - uk
metrics:
  - f1
  - precision
  - recall
base_model:
  - 51la5/roberta-large-NER
pipeline_tag: token-classification
library_name: spacy
model-index:
  - name: roberta-large-ner-uk
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9468
          - name: NER Recall
            type: recall
            value: 0.9416
          - name: NER F1
            type: f1
            value: 0.9442
tags:
  - ner
  - uk
datasets:
  - lang-uk/UberText-NER-Silver

roberta-large-ner-uk

A transformer-based NER model for Ukrainian, trained on a combination of human-annotated data (NER-UK 2.0) and high-quality silver-standard annotations (UberText-NER-Silver). Based on roberta-large-NER, this model achieves state-of-the-art performance on a wide range of named entities in Ukrainian.

Model Details

  • Model type: Transformer-based encoder (spaCy pipeline)
  • Language (NLP): Ukrainian
  • License: Apache 2.0
  • Finetuned from model: 51la5/roberta-large-NER
  • Entity Types (13): PERS, ORG, LOC, DATE, TIME, JOB, MON, PCT, PERIOD, DOC, QUANT, ART, MISC

Usage

import spacy
nlp = spacy.load("roberta-large-ner-uk")
doc = nlp("Президент України Володимир Зеленський виступив у Брюсселі.")
print([(ent.text, ent.label_) for ent in doc.ents])

Authors

Vladyslav Radchenko, Nazarii Drushchak