See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 304517323a6585e4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/304517323a6585e4_train_data.json
type:
field_input: context
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/488210f3-bd46-41d9-97e3-a3ac8a835f92
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/304517323a6585e4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 117a98a2-4bf3-4e41-bce4-b0d0b5f5fe7a
wandb_project: new-03
wandb_run: your_name
wandb_runid: 117a98a2-4bf3-4e41-bce4-b0d0b5f5fe7a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
488210f3-bd46-41d9-97e3-a3ac8a835f92
This model is a fine-tuned version of jingyeom/seal3.1.6n_7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6051
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8827 | 0.0006 | 1 | 2.1149 |
1.5823 | 0.0282 | 50 | 1.9525 |
1.3602 | 0.0564 | 100 | 1.6702 |
1.7614 | 0.0847 | 150 | 1.6117 |
1.8182 | 0.1129 | 200 | 1.6051 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for lesso/488210f3-bd46-41d9-97e3-a3ac8a835f92
Base model
jingyeom/seal3.1.6n_7b