File size: 15,034 Bytes
f002295 cbe0420 f002295 cbe0420 4989262 cbe0420 4989262 cbe0420 6333913 cbe0420 e207a8d 29579af 4989262 cbe0420 069db10 cbe0420 069db10 cbe0420 069db10 cbe0420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
---
license: openrail
language:
- en
metrics:
- f1
library_name: fairseq
pipeline_tag: audio-classification
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
We explore benefits of unsupervised pretraining of wav2vec 2.0 (W2V2) using large-scale unlabeled home recordings collected using LittleBeats and LENA (Language Environment Analysis) devices.
LittleBeats (LB) is a new infant wearable multi-modal device that we developed, which simultaneously records audio, movement of the infant, as well as heart-rate variablity.
We use W2V2 to advance LB audio pipeline such that it automatically provides reliable labels of speaker diarization and vocalization classifications for family members, including infants, parents, and siblings, at home.
We show that W2V2 pretrained on thousands hours of large-scale unlabeled home audio outperforms oracle W2V2 pretrained on 52k-hours released by Facebook/Meta in terms of automatic family audio analysis tasks.
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
Two versions of pretrained W2V2 models are available:
- **LB1100/checkpoint_best.pt** pretrained using 1100-hour of LB home recordings collected from 110 families of children under 5-year-old
- **LL4300/checkpoint_best.pt** pretrained using 1100-hour of LB home recordings collected from 110 families + 3200-hour of LENA home recordings from 275 families of children under 5-year-old
## Model Sources
For more information regarding this model, please checkout our paper
- **Paper [optional]:** [More Information Needed]
# Uses
We develop fine-tuning recipe using SpeechBrain toolkit available at
- **Repository:** https://github.com/jialuli3/speechbrain/tree/infant-voc-classification/recipes/wav2vec_kic
## Quick Start [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
If you wish to use fairseq framework, the following code snippet can be used to load our pretrained model
'''
"""This lobe enables the integration of fairseq pretrained wav2vec models.
Reference: https://arxiv.org/abs/2006.11477
Reference: https://arxiv.org/abs/1904.05862
FairSeq >= 1.0.0 needs to be installed: https://fairseq.readthedocs.io/en/latest/
Authors
* Titouan Parcollet 2021
* Salima Mdhaffar 2021
"""
import torch
import torch.nn.functional as F
from torch import nn
from speechbrain.utils.data_utils import download_file
import pdb
# We check if fairseq is installed.
try:
import fairseq
except ImportError:
MSG = "Please install Fairseq to use pretrained wav2vec\n"
MSG += "E.G. run: pip install fairseq"
raise ImportError(MSG)
class FairseqWav2Vec2(nn.Module):
"""This lobe enables the integration of fairseq pretrained wav2vec2.0 models.
Source paper: https://arxiv.org/abs/2006.11477
FairSeq >= 1.0.0 needs to be installed:
https://fairseq.readthedocs.io/en/latest/
The model can be used as a fixed features extractor or can be finetuned. It
will download automatically the model if a url is given (e.g FairSeq
repository from GitHub).
Arguments
---------
pretrained_path : str
Path of the pretrained wav2vec2 model. It can be a url or a local path.
save_path : str
Path and filename of the downloaded model.
input_norm : bool (default: None)
If True, a layer_norm (affine) will be applied to the input waveform.
By default, it is extracted from the checkpoint of the downloaded model
in order to match the pretraining conditions. However, if this information
is not given in the checkpoint, it has to be given manually.
output_norm : bool (default: True)
If True, a layer_norm (affine) will be applied to the output obtained
from the wav2vec model.
freeze : bool (default: True)
If True, the model is frozen. If False, the model will be trained
alongside with the rest of the pipeline.
pretrain : bool (default: True)
If True, the model is pretrained with the specified source.
If False, the randomly-initialized model is instantiated.
dropout : float (default: None)
If different from None (0.0 to 1.0), it will override the given fairseq
dropout rates. This is useful if the wav2vec2 model has been trained
without dropout and one wants to reactivate it for downstream task
fine-tuning (better performance observed).
Example
-------
>>> inputs = torch.rand([10, 600])
>>> model_url = "https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt"
>>> save_path = "models_checkpoints/wav2vec2.pt"
>>> model = FairseqWav2Vec2(model_url, save_path)
>>> outputs = model(inputs)
>>> outputs.shape
torch.Size([10, 100, 768])
"""
def __init__(
self,
pretrained_path,
save_path,
input_norm=None,
output_norm=True,
freeze=True,
pretrain=True,
dropout=None,
encoder_dropout = None,
output_all_hiddens=False,
tgt_layer=None,
include_CNN_layer=True,
):
super().__init__()
# Download the pretrained wav2vec2 model. It can be local or online.
download_file(pretrained_path, save_path)
# During pretraining dropout might be set to 0. However, we might want
# to apply dropout when fine-tuning on a downstream task. Hence we need
# to modify the fairseq cfg to activate dropout (if requested).
overrides={}
if encoder_dropout is not None:
overrides = {
"model": {
"encoder_layerdrop": encoder_dropout,
}
}
if not freeze:
if dropout is not None and encoder_dropout is not None:
overrides = {
"model": {
"dropout": dropout,
"encoder_layerdrop": encoder_dropout,
"dropout_input": dropout,
"attention_dropout": dropout,
}
}
elif dropout is not None:
overrides = {
"model": {
"dropout": dropout,
"dropout_input": dropout,
"attention_dropout": dropout,
}
}
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[save_path], arg_overrides=overrides
)
# wav2vec pretrained models may need the input waveform to be normalized
# Hence, we check if the model has be trained with or without it.
# If the information isn't contained in the checkpoint IT HAS TO BE GIVEN
# BY THE USER.
if input_norm is None:
if hasattr(cfg["task"], "normalize"):
self.normalize = cfg["task"].normalize
elif hasattr(cfg, "normalize"):
self.normalize = cfg.normalize
else:
self.normalize = False
else:
self.normalize = input_norm
model = model[0]
self.model = model
self.freeze = freeze
self.output_norm = output_norm
if self.freeze:
self.model.eval()
# Freeze parameters
for param in model.parameters():
param.requires_grad = False
else:
self.model.train()
for param in model.parameters():
param.requires_grad = True
# Randomly initialized layers if pretrain is False
if not (pretrain):
self.reset_layer(self.model)
# Following the fairseq implementation of downstream training,
# we remove some modules that are unnecessary.
self.remove_pretraining_modules()
self.output_all_hiddens = output_all_hiddens
self.tgt_layer = tgt_layer
self.include_CNN_layer = include_CNN_layer
def forward(self, wav):
"""Takes an input waveform and return its corresponding wav2vec encoding.
Arguments
---------
wav : torch.Tensor (signal)
A batch of audio signals to transform to features.
"""
# If we freeze, we simply remove all grads and features from the graph.
if self.freeze:
with torch.no_grad():
return self.extract_features(wav).detach()
return self.extract_features(wav)
def extract_features(self, wav):
"""Extracts the wav2vect embeddings"""
# We normalize the input signal if needed.
if self.normalize:
wav = F.layer_norm(wav, wav.shape)
# Extract wav2vec output
if self.tgt_layer=="CNN": #initial embeddings from conv
out = self.model.extract_features(wav, padding_mask=None, mask=False)
out = self.model.post_extract_proj(out['features'])
elif isinstance(self.tgt_layer, int):
out = self.model.extract_features(wav, padding_mask=None, mask=False, layer=self.tgt_layer)['x']
else: #
out = self.model.extract_features(wav, padding_mask=None, mask=False, layer=self.tgt_layer)
if self.output_all_hiddens or isinstance(self.tgt_layer, list):
out = self.aggregate_features(out, include_CNN_layer=self.include_CNN_layer) # 13, B, T, D
if isinstance(self.tgt_layer, list):
out = out[self.tgt_layer]
else:
out = out['x']
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape)
return out
def aggregate_features(self, out, include_CNN_layer=True):
features = []
if include_CNN_layer:
features = [self.model.post_extract_proj(out['features'])]
self.model.layerdrop = 0
for i in range(len(out['layer_results'])):
curr_feature = out['layer_results'][i][0].transpose(0,1)
features.append(curr_feature)
features = torch.stack(features)
return features
def reset_layer(self, model):
"""Reinitializes the parameters of the network"""
if hasattr(model, "reset_parameters"):
model.reset_parameters()
for child_layer in model.children():
if model != child_layer:
self.reset_layer(child_layer)
def remove_pretraining_modules(self):
""" Remove uneeded modules. Inspired by the same fairseq function."""
self.model.quantizer = None
self.model.project_q = None
self.model.target_glu = None
self.model.final_proj = None
class FairseqWav2Vec1(nn.Module):
"""This lobes enables the integration of fairseq pretrained wav2vec1.0 models.
Arguments
---------
pretrained_path : str
Path of the pretrained wav2vec1 model. It can be a url or a local path.
save_path : str
Path and filename of the downloaded model.
output_norm : bool (default: True)
If True, a layer_norm (affine) will be applied to the output obtained
from the wav2vec model.
freeze : bool (default: True)
If True, the model is frozen. If False, the model will be trained
alongside with the rest of the pipeline.
pretrain : bool (default: True)
If True, the model is pretrained with the specified source.
If False, the randomly-initialized model is instantiated.
Example
-------
>>> inputs = torch.rand([10, 600])
>>> model_url = ""
>>> save_path = "models_checkpoints/wav2vec.pt"
>>> model = FairseqWav2Vec1(model_url, save_path)
>>> outputs = model(inputs)
>>> outputs.shape
torch.Size([10, 100, 512])
"""
def __init__(
self,
pretrained_path,
save_path,
output_norm=True,
freeze=True,
pretrain=True,
):
super().__init__()
self.freeze = freeze
self.output_norm = output_norm
# Download the pretrained wav2vec1 model. It can be local or online.
download_file(pretrained_path, save_path)
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[pretrained_path]
)
self.model = model
self.model = self.model[0]
if self.freeze:
model.eval()
# Randomly initialized layers if pretrain is False
if not (pretrain):
self.reset_layer(self.model)
def forward(self, wav):
"""Takes an input waveform and return its corresponding wav2vec encoding.
Arguments
---------
wav : torch.Tensor (signal)
A batch of audio signals to transform to features.
"""
# If we freeze, we simply remove all grads and features from the graph.
if self.freeze:
with torch.no_grad():
return self.extract_features(wav).detach()
return self.extract_features(wav)
def extract_features(self, wav):
"""Extracts the wav2vect embeddings"""
out = self.model.feature_extractor(wav)
out = self.model.feature_aggregator(out).squeeze(0)
out = out.transpose(2, 1)
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape)
return out
def reset_layer(self, model):
"""Reinitializes the parameters of the network"""
if hasattr(model, "reset_parameters"):
model.reset_parameters()
for child_layer in model.children():
if model != child_layer:
self.reset_layer(child_layer)
'''
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
We test 4 unlabeled datasets on unsupervised pretrained W2V2-base models:
- **base (oracle version):** originally released version pretrained on ~52k-hour unlabeled audio
- **Libri960h:** oracle version fine-tuned using 960h Librispeech
- **LB1100h:** pretrain W2V2 using 1100h LB home recordings
- **LL4300h:** pretrain W2V2 using 4300h LB+LENA home recordings
We then fine-tune pretrained models on 11.7h of LB labeled home recordings, the f1 scores across three tasks are

For more details of experiments and results, please refer to our paper.
# Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
If you found this model helpful to you, please cite us as
**BibTeX:**
# Model Card Contact
Jialu Li (she, her, hers)
Ph.D candidate @ Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
E-mail: [email protected]
Homepage: https://sites.google.com/view/jialuli/ |