SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lucian-li/my_new_model")
# Run inference
sentences = [
'Carrier aggregation measurement accuracy',
'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)',
'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 583,058 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 85.73 tokens
- max: 229 tokens
- min: 7 tokens
- mean: 85.86 tokens
- max: 229 tokens
- Samples:
anchor positive Triggering Optimization Function (TG_F)
This functional bloc supports the following functions: [SO2], [SO3].Optimization Fallback Function (O_FB_F)
This functional bloc supports the following functions: [SO7], [SO9], [SO10].Optimization Fallback Function (O_FB_F)
This functional bloc supports the following functions: [SO7], [SO9], [SO10].Self-Optimization Progress Update Function (SO_PGS_UF)
This function updates the self-optimization progress and important events to the operator: [SO11]Self-Optimization Progress Update Function (SO_PGS_UF)
This function updates the self-optimization progress and important events to the operator: [SO11]NRM IRP Update Function (NRM_UF)
This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 11num_train_epochs
: 1warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 11per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0019 | 100 | 0.8198 |
0.0038 | 200 | 0.7651 |
0.0057 | 300 | 0.6659 |
0.0075 | 400 | 0.6404 |
0.0094 | 500 | 0.5638 |
0.0113 | 600 | 0.5184 |
0.0132 | 700 | 0.448 |
0.0151 | 800 | 0.4464 |
0.0170 | 900 | 0.3461 |
0.0189 | 1000 | 0.3731 |
0.0208 | 1100 | 0.343 |
0.0226 | 1200 | 0.3557 |
0.0245 | 1300 | 0.3623 |
0.0264 | 1400 | 0.2941 |
0.0283 | 1500 | 0.3153 |
0.0302 | 1600 | 0.2724 |
0.0321 | 1700 | 0.2702 |
0.0340 | 1800 | 0.2934 |
0.0358 | 1900 | 0.2255 |
0.0377 | 2000 | 0.2519 |
0.0396 | 2100 | 0.2424 |
0.0415 | 2200 | 0.1883 |
0.0434 | 2300 | 0.2428 |
0.0453 | 2400 | 0.2212 |
0.0472 | 2500 | 0.1862 |
0.0491 | 2600 | 0.2451 |
0.0509 | 2700 | 0.2336 |
0.0528 | 2800 | 0.225 |
0.0547 | 2900 | 0.2154 |
0.0566 | 3000 | 0.1907 |
0.0585 | 3100 | 0.2514 |
0.0604 | 3200 | 0.2082 |
0.0623 | 3300 | 0.2076 |
0.0641 | 3400 | 0.1818 |
0.0660 | 3500 | 0.1688 |
0.0679 | 3600 | 0.2261 |
0.0698 | 3700 | 0.2108 |
0.0717 | 3800 | 0.1732 |
0.0736 | 3900 | 0.1764 |
0.0755 | 4000 | 0.1481 |
0.0773 | 4100 | 0.1687 |
0.0792 | 4200 | 0.1897 |
0.0811 | 4300 | 0.1685 |
0.0830 | 4400 | 0.1915 |
0.0849 | 4500 | 0.2013 |
0.0868 | 4600 | 0.1701 |
0.0887 | 4700 | 0.2006 |
0.0906 | 4800 | 0.2006 |
0.0924 | 4900 | 0.1617 |
0.0943 | 5000 | 0.1406 |
0.0962 | 5100 | 0.1456 |
0.0981 | 5200 | 0.1703 |
0.1000 | 5300 | 0.1464 |
0.1019 | 5400 | 0.1803 |
0.1038 | 5500 | 0.1346 |
0.1056 | 5600 | 0.134 |
0.1075 | 5700 | 0.1567 |
0.1094 | 5800 | 0.163 |
0.1113 | 5900 | 0.1544 |
0.1132 | 6000 | 0.1648 |
0.1151 | 6100 | 0.1505 |
0.1170 | 6200 | 0.1231 |
0.1189 | 6300 | 0.1591 |
0.1207 | 6400 | 0.1533 |
0.1226 | 6500 | 0.1376 |
0.1245 | 6600 | 0.1473 |
0.1264 | 6700 | 0.1405 |
0.1283 | 6800 | 0.141 |
0.1302 | 6900 | 0.1105 |
0.1321 | 7000 | 0.1712 |
0.1339 | 7100 | 0.1534 |
0.1358 | 7200 | 0.1578 |
0.1377 | 7300 | 0.1101 |
0.1396 | 7400 | 0.128 |
0.1415 | 7500 | 0.1679 |
0.1434 | 7600 | 0.1592 |
0.1453 | 7700 | 0.1383 |
0.1472 | 7800 | 0.1274 |
0.1490 | 7900 | 0.1616 |
0.1509 | 8000 | 0.1617 |
0.1528 | 8100 | 0.1361 |
0.1547 | 8200 | 0.1268 |
0.1566 | 8300 | 0.1286 |
0.1585 | 8400 | 0.1253 |
0.1604 | 8500 | 0.1157 |
0.1622 | 8600 | 0.1499 |
0.1641 | 8700 | 0.1398 |
0.1660 | 8800 | 0.1188 |
0.1679 | 8900 | 0.1103 |
0.1698 | 9000 | 0.1217 |
0.1717 | 9100 | 0.1144 |
0.1736 | 9200 | 0.1203 |
0.1755 | 9300 | 0.1074 |
0.1773 | 9400 | 0.1145 |
0.1792 | 9500 | 0.1035 |
0.1811 | 9600 | 0.1406 |
0.1830 | 9700 | 0.1465 |
0.1849 | 9800 | 0.1169 |
0.1868 | 9900 | 0.1115 |
0.1887 | 10000 | 0.1207 |
0.1905 | 10100 | 0.1191 |
0.1924 | 10200 | 0.1099 |
0.1943 | 10300 | 0.1309 |
0.1962 | 10400 | 0.1092 |
0.1981 | 10500 | 0.1075 |
0.2000 | 10600 | 0.1174 |
0.2019 | 10700 | 0.1103 |
0.2038 | 10800 | 0.1077 |
0.2056 | 10900 | 0.0844 |
0.2075 | 11000 | 0.1093 |
0.2094 | 11100 | 0.1428 |
0.2113 | 11200 | 0.0928 |
0.2132 | 11300 | 0.1039 |
0.2151 | 11400 | 0.1436 |
0.2170 | 11500 | 0.1197 |
0.2188 | 11600 | 0.1249 |
0.2207 | 11700 | 0.0856 |
0.2226 | 11800 | 0.1126 |
0.2245 | 11900 | 0.1028 |
0.2264 | 12000 | 0.0988 |
0.2283 | 12100 | 0.1031 |
0.2302 | 12200 | 0.101 |
0.2320 | 12300 | 0.1188 |
0.2339 | 12400 | 0.0908 |
0.2358 | 12500 | 0.069 |
0.2377 | 12600 | 0.1099 |
0.2396 | 12700 | 0.1227 |
0.2415 | 12800 | 0.0794 |
0.2434 | 12900 | 0.0969 |
0.2453 | 13000 | 0.0864 |
0.2471 | 13100 | 0.1193 |
0.2490 | 13200 | 0.0824 |
0.2509 | 13300 | 0.12 |
0.2528 | 13400 | 0.0928 |
0.2547 | 13500 | 0.1126 |
0.2566 | 13600 | 0.0912 |
0.2585 | 13700 | 0.1126 |
0.2603 | 13800 | 0.078 |
0.2622 | 13900 | 0.0715 |
0.2641 | 14000 | 0.1095 |
0.2660 | 14100 | 0.089 |
0.2679 | 14200 | 0.0926 |
0.2698 | 14300 | 0.086 |
0.2717 | 14400 | 0.1115 |
0.2736 | 14500 | 0.0996 |
0.2754 | 14600 | 0.1014 |
0.2773 | 14700 | 0.1033 |
0.2792 | 14800 | 0.0732 |
0.2811 | 14900 | 0.0994 |
0.2830 | 15000 | 0.0872 |
0.2849 | 15100 | 0.0923 |
0.2868 | 15200 | 0.111 |
0.2886 | 15300 | 0.0891 |
0.2905 | 15400 | 0.0868 |
0.2924 | 15500 | 0.0773 |
0.2943 | 15600 | 0.0918 |
0.2962 | 15700 | 0.0726 |
0.2981 | 15800 | 0.0951 |
0.3000 | 15900 | 0.0835 |
0.3019 | 16000 | 0.083 |
0.3037 | 16100 | 0.095 |
0.3056 | 16200 | 0.0722 |
0.3075 | 16300 | 0.1061 |
0.3094 | 16400 | 0.0902 |
0.3113 | 16500 | 0.0978 |
0.3132 | 16600 | 0.0983 |
0.3151 | 16700 | 0.0808 |
0.3169 | 16800 | 0.0758 |
0.3188 | 16900 | 0.071 |
0.3207 | 17000 | 0.0918 |
0.3226 | 17100 | 0.1011 |
0.3245 | 17200 | 0.079 |
0.3264 | 17300 | 0.0992 |
0.3283 | 17400 | 0.1089 |
0.3302 | 17500 | 0.0904 |
0.3320 | 17600 | 0.0956 |
0.3339 | 17700 | 0.0747 |
0.3358 | 17800 | 0.0961 |
0.3377 | 17900 | 0.0923 |
0.3396 | 18000 | 0.1114 |
0.3415 | 18100 | 0.0689 |
0.3434 | 18200 | 0.1308 |
0.3452 | 18300 | 0.0923 |
0.3471 | 18400 | 0.0756 |
0.3490 | 18500 | 0.0842 |
0.3509 | 18600 | 0.0859 |
0.3528 | 18700 | 0.0903 |
0.3547 | 18800 | 0.084 |
0.3566 | 18900 | 0.0923 |
0.3584 | 19000 | 0.0848 |
0.3603 | 19100 | 0.0812 |
0.3622 | 19200 | 0.0872 |
0.3641 | 19300 | 0.083 |
0.3660 | 19400 | 0.0826 |
0.3679 | 19500 | 0.101 |
0.3698 | 19600 | 0.0804 |
0.3717 | 19700 | 0.0676 |
0.3735 | 19800 | 0.0836 |
0.3754 | 19900 | 0.0711 |
0.3773 | 20000 | 0.0825 |
0.3792 | 20100 | 0.0835 |
0.3811 | 20200 | 0.0816 |
0.3830 | 20300 | 0.0812 |
0.3849 | 20400 | 0.0689 |
0.3867 | 20500 | 0.0627 |
0.3886 | 20600 | 0.0965 |
0.3905 | 20700 | 0.0632 |
0.3924 | 20800 | 0.0945 |
0.3943 | 20900 | 0.0923 |
0.3962 | 21000 | 0.0833 |
0.3981 | 21100 | 0.0537 |
0.4000 | 21200 | 0.0822 |
0.4018 | 21300 | 0.0684 |
0.4037 | 21400 | 0.0807 |
0.4056 | 21500 | 0.0945 |
0.4075 | 21600 | 0.0981 |
0.4094 | 21700 | 0.0748 |
0.4113 | 21800 | 0.0943 |
0.4132 | 21900 | 0.0709 |
0.4150 | 22000 | 0.0551 |
0.4169 | 22100 | 0.0679 |
0.4188 | 22200 | 0.0666 |
0.4207 | 22300 | 0.0976 |
0.4226 | 22400 | 0.0666 |
0.4245 | 22500 | 0.0651 |
0.4264 | 22600 | 0.0803 |
0.4283 | 22700 | 0.068 |
0.4301 | 22800 | 0.0541 |
0.4320 | 22900 | 0.0487 |
0.4339 | 23000 | 0.091 |
0.4358 | 23100 | 0.074 |
0.4377 | 23200 | 0.0733 |
0.4396 | 23300 | 0.0845 |
0.4415 | 23400 | 0.0823 |
0.4433 | 23500 | 0.0561 |
0.4452 | 23600 | 0.0508 |
0.4471 | 23700 | 0.074 |
0.4490 | 23800 | 0.0683 |
0.4509 | 23900 | 0.0797 |
0.4528 | 24000 | 0.0561 |
0.4547 | 24100 | 0.0744 |
0.4566 | 24200 | 0.0638 |
0.4584 | 24300 | 0.0633 |
0.4603 | 24400 | 0.062 |
0.4622 | 24500 | 0.0887 |
0.4641 | 24600 | 0.0908 |
0.4660 | 24700 | 0.0654 |
0.4679 | 24800 | 0.0522 |
0.4698 | 24900 | 0.0851 |
0.4716 | 25000 | 0.0763 |
0.4735 | 25100 | 0.0623 |
0.4754 | 25200 | 0.0712 |
0.4773 | 25300 | 0.0866 |
0.4792 | 25400 | 0.0812 |
0.4811 | 25500 | 0.0706 |
0.4830 | 25600 | 0.0734 |
0.4849 | 25700 | 0.068 |
0.4867 | 25800 | 0.111 |
0.4886 | 25900 | 0.0627 |
0.4905 | 26000 | 0.0459 |
0.4924 | 26100 | 0.0794 |
0.4943 | 26200 | 0.0547 |
0.4962 | 26300 | 0.0779 |
0.4981 | 26400 | 0.0609 |
0.4999 | 26500 | 0.0785 |
0.5018 | 26600 | 0.0722 |
0.5037 | 26700 | 0.0585 |
0.5056 | 26800 | 0.0572 |
0.5075 | 26900 | 0.0636 |
0.5094 | 27000 | 0.0642 |
0.5113 | 27100 | 0.0606 |
0.5131 | 27200 | 0.0725 |
0.5150 | 27300 | 0.0664 |
0.5169 | 27400 | 0.0933 |
0.5188 | 27500 | 0.0486 |
0.5207 | 27600 | 0.0514 |
0.5226 | 27700 | 0.0779 |
0.5245 | 27800 | 0.0614 |
0.5264 | 27900 | 0.0646 |
0.5282 | 28000 | 0.0606 |
0.5301 | 28100 | 0.0453 |
0.5320 | 28200 | 0.0749 |
0.5339 | 28300 | 0.0695 |
0.5358 | 28400 | 0.0897 |
0.5377 | 28500 | 0.0612 |
0.5396 | 28600 | 0.0542 |
0.5414 | 28700 | 0.0504 |
0.5433 | 28800 | 0.0539 |
0.5452 | 28900 | 0.0584 |
0.5471 | 29000 | 0.0552 |
0.5490 | 29100 | 0.076 |
0.5509 | 29200 | 0.0861 |
0.5528 | 29300 | 0.067 |
0.5547 | 29400 | 0.0887 |
0.5565 | 29500 | 0.059 |
0.5584 | 29600 | 0.0484 |
0.5603 | 29700 | 0.0703 |
0.5622 | 29800 | 0.0802 |
0.5641 | 29900 | 0.0805 |
0.5660 | 30000 | 0.0737 |
0.5679 | 30100 | 0.0518 |
0.5697 | 30200 | 0.0517 |
0.5716 | 30300 | 0.0806 |
0.5735 | 30400 | 0.0586 |
0.5754 | 30500 | 0.0491 |
0.5773 | 30600 | 0.0591 |
0.5792 | 30700 | 0.066 |
0.5811 | 30800 | 0.0419 |
0.5830 | 30900 | 0.0517 |
0.5848 | 31000 | 0.0539 |
0.5867 | 31100 | 0.0845 |
0.5886 | 31200 | 0.044 |
0.5905 | 31300 | 0.0597 |
0.5924 | 31400 | 0.0556 |
0.5943 | 31500 | 0.0724 |
0.5962 | 31600 | 0.0465 |
0.5980 | 31700 | 0.0585 |
0.5999 | 31800 | 0.0978 |
0.6018 | 31900 | 0.0657 |
0.6037 | 32000 | 0.0438 |
0.6056 | 32100 | 0.0429 |
0.6075 | 32200 | 0.0629 |
0.6094 | 32300 | 0.0591 |
0.6113 | 32400 | 0.0543 |
0.6131 | 32500 | 0.0502 |
0.6150 | 32600 | 0.0733 |
0.6169 | 32700 | 0.0426 |
0.6188 | 32800 | 0.0626 |
0.6207 | 32900 | 0.0406 |
0.6226 | 33000 | 0.0524 |
0.6245 | 33100 | 0.0619 |
0.6263 | 33200 | 0.0633 |
0.6282 | 33300 | 0.0582 |
0.6301 | 33400 | 0.0852 |
0.6320 | 33500 | 0.0482 |
0.6339 | 33600 | 0.0509 |
0.6358 | 33700 | 0.0626 |
0.6377 | 33800 | 0.0609 |
0.6396 | 33900 | 0.0508 |
0.6414 | 34000 | 0.0486 |
0.6433 | 34100 | 0.0508 |
0.6452 | 34200 | 0.0581 |
0.6471 | 34300 | 0.0409 |
0.6490 | 34400 | 0.0703 |
0.6509 | 34500 | 0.0606 |
0.6528 | 34600 | 0.0517 |
0.6546 | 34700 | 0.0493 |
0.6565 | 34800 | 0.0271 |
0.6584 | 34900 | 0.0337 |
0.6603 | 35000 | 0.0369 |
0.6622 | 35100 | 0.0474 |
0.6641 | 35200 | 0.0562 |
0.6660 | 35300 | 0.0663 |
0.6678 | 35400 | 0.0419 |
0.6697 | 35500 | 0.0766 |
0.6716 | 35600 | 0.0439 |
0.6735 | 35700 | 0.0538 |
0.6754 | 35800 | 0.0512 |
0.6773 | 35900 | 0.0388 |
0.6792 | 36000 | 0.0528 |
0.6811 | 36100 | 0.0489 |
0.6829 | 36200 | 0.0454 |
0.6848 | 36300 | 0.0449 |
0.6867 | 36400 | 0.055 |
0.6886 | 36500 | 0.0344 |
0.6905 | 36600 | 0.0485 |
0.6924 | 36700 | 0.0496 |
0.6943 | 36800 | 0.0705 |
0.6961 | 36900 | 0.0617 |
0.6980 | 37000 | 0.054 |
0.6999 | 37100 | 0.0613 |
0.7018 | 37200 | 0.0549 |
0.7037 | 37300 | 0.0378 |
0.7056 | 37400 | 0.0508 |
0.7075 | 37500 | 0.0613 |
0.7094 | 37600 | 0.0602 |
0.7112 | 37700 | 0.0592 |
0.7131 | 37800 | 0.0441 |
0.7150 | 37900 | 0.0445 |
0.7169 | 38000 | 0.0464 |
0.7188 | 38100 | 0.0537 |
0.7207 | 38200 | 0.0521 |
0.7226 | 38300 | 0.0447 |
0.7244 | 38400 | 0.044 |
0.7263 | 38500 | 0.0506 |
0.7282 | 38600 | 0.043 |
0.7301 | 38700 | 0.0441 |
0.7320 | 38800 | 0.0444 |
0.7339 | 38900 | 0.0416 |
0.7358 | 39000 | 0.0556 |
0.7377 | 39100 | 0.0829 |
0.7395 | 39200 | 0.043 |
0.7414 | 39300 | 0.0366 |
0.7433 | 39400 | 0.0457 |
0.7452 | 39500 | 0.0622 |
0.7471 | 39600 | 0.0353 |
0.7490 | 39700 | 0.0597 |
0.7509 | 39800 | 0.0468 |
0.7527 | 39900 | 0.0418 |
0.7546 | 40000 | 0.0606 |
0.7565 | 40100 | 0.0613 |
0.7584 | 40200 | 0.0654 |
0.7603 | 40300 | 0.046 |
0.7622 | 40400 | 0.034 |
0.7641 | 40500 | 0.0378 |
0.7660 | 40600 | 0.0461 |
0.7678 | 40700 | 0.0404 |
0.7697 | 40800 | 0.0583 |
0.7716 | 40900 | 0.0636 |
0.7735 | 41000 | 0.0537 |
0.7754 | 41100 | 0.0336 |
0.7773 | 41200 | 0.0315 |
0.7792 | 41300 | 0.0536 |
0.7810 | 41400 | 0.0532 |
0.7829 | 41500 | 0.0553 |
0.7848 | 41600 | 0.0458 |
0.7867 | 41700 | 0.0372 |
0.7886 | 41800 | 0.0346 |
0.7905 | 41900 | 0.0419 |
0.7924 | 42000 | 0.0461 |
0.7942 | 42100 | 0.0517 |
0.7961 | 42200 | 0.0574 |
0.7980 | 42300 | 0.0411 |
0.7999 | 42400 | 0.0389 |
0.8018 | 42500 | 0.0578 |
0.8037 | 42600 | 0.0637 |
0.8056 | 42700 | 0.0434 |
0.8075 | 42800 | 0.0776 |
0.8093 | 42900 | 0.0644 |
0.8112 | 43000 | 0.0537 |
0.8131 | 43100 | 0.0519 |
0.8150 | 43200 | 0.0241 |
0.8169 | 43300 | 0.0295 |
0.8188 | 43400 | 0.0618 |
0.8207 | 43500 | 0.0275 |
0.8225 | 43600 | 0.0605 |
0.8244 | 43700 | 0.0414 |
0.8263 | 43800 | 0.0446 |
0.8282 | 43900 | 0.0449 |
0.8301 | 44000 | 0.0558 |
0.8320 | 44100 | 0.0336 |
0.8339 | 44200 | 0.0555 |
0.8358 | 44300 | 0.0399 |
0.8376 | 44400 | 0.0319 |
0.8395 | 44500 | 0.0331 |
0.8414 | 44600 | 0.0415 |
0.8433 | 44700 | 0.0424 |
0.8452 | 44800 | 0.0287 |
0.8471 | 44900 | 0.044 |
0.8490 | 45000 | 0.0375 |
0.8508 | 45100 | 0.032 |
0.8527 | 45200 | 0.0406 |
0.8546 | 45300 | 0.0429 |
0.8565 | 45400 | 0.0727 |
0.8584 | 45500 | 0.05 |
0.8603 | 45600 | 0.0436 |
0.8622 | 45700 | 0.0401 |
0.8641 | 45800 | 0.0312 |
0.8659 | 45900 | 0.036 |
0.8678 | 46000 | 0.0558 |
0.8697 | 46100 | 0.0436 |
0.8716 | 46200 | 0.0517 |
0.8735 | 46300 | 0.0361 |
0.8754 | 46400 | 0.038 |
0.8773 | 46500 | 0.0418 |
0.8791 | 46600 | 0.0407 |
0.8810 | 46700 | 0.0336 |
0.8829 | 46800 | 0.0559 |
0.8848 | 46900 | 0.0488 |
0.8867 | 47000 | 0.0463 |
0.8886 | 47100 | 0.0504 |
0.8905 | 47200 | 0.0414 |
0.8924 | 47300 | 0.0428 |
0.8942 | 47400 | 0.0389 |
0.8961 | 47500 | 0.0422 |
0.8980 | 47600 | 0.0533 |
0.8999 | 47700 | 0.0386 |
0.9018 | 47800 | 0.0672 |
0.9037 | 47900 | 0.0505 |
0.9056 | 48000 | 0.0632 |
0.9074 | 48100 | 0.0263 |
0.9093 | 48200 | 0.0448 |
0.9112 | 48300 | 0.0413 |
0.9131 | 48400 | 0.0532 |
0.9150 | 48500 | 0.0503 |
0.9169 | 48600 | 0.0472 |
0.9188 | 48700 | 0.0255 |
0.9207 | 48800 | 0.035 |
0.9225 | 48900 | 0.0353 |
0.9244 | 49000 | 0.0407 |
0.9263 | 49100 | 0.0154 |
0.9282 | 49200 | 0.0535 |
0.9301 | 49300 | 0.0435 |
0.9320 | 49400 | 0.0461 |
0.9339 | 49500 | 0.0288 |
0.9357 | 49600 | 0.0366 |
0.9376 | 49700 | 0.0411 |
0.9395 | 49800 | 0.0605 |
0.9414 | 49900 | 0.0551 |
0.9433 | 50000 | 0.0297 |
0.9452 | 50100 | 0.0388 |
0.9471 | 50200 | 0.0402 |
0.9489 | 50300 | 0.0321 |
0.9508 | 50400 | 0.0538 |
0.9527 | 50500 | 0.036 |
0.9546 | 50600 | 0.0318 |
0.9565 | 50700 | 0.0398 |
0.9584 | 50800 | 0.0405 |
0.9603 | 50900 | 0.0408 |
0.9622 | 51000 | 0.0485 |
0.9640 | 51100 | 0.047 |
0.9659 | 51200 | 0.0452 |
0.9678 | 51300 | 0.0469 |
0.9697 | 51400 | 0.0473 |
0.9716 | 51500 | 0.039 |
0.9735 | 51600 | 0.0579 |
0.9754 | 51700 | 0.0332 |
0.9772 | 51800 | 0.0322 |
0.9791 | 51900 | 0.0324 |
0.9810 | 52000 | 0.035 |
0.9829 | 52100 | 0.0517 |
0.9848 | 52200 | 0.0275 |
0.9867 | 52300 | 0.0466 |
0.9886 | 52400 | 0.0452 |
0.9905 | 52500 | 0.0446 |
0.9923 | 52600 | 0.0357 |
0.9942 | 52700 | 0.0368 |
0.9961 | 52800 | 0.0365 |
0.9980 | 52900 | 0.0303 |
0.9999 | 53000 | 0.0288 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 110
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for lucian-li/my_new_model
Base model
Alibaba-NLP/gte-multilingual-base