GFM
Collection
Fine-tuned Checkpoint of a Genomic Foundation Model Using DNABERT-2 Datasets. Thanks for the contribution Chenhao Jerry Qiu and Haozheng Robin Luo
•
139 items
•
Updated
•
1
This repository contains the GenomeOcean-100M-finetuned-prom_300_tata
model.
It is a transformer model fine-tuned
You can use this model with the following Python code. Make sure to use the AutoModelFor... class that matches your pipeline_tag (e.g., AutoModelForTokenClassification, AutoModelForSequenceClassification).
from transformers import AutoTokenizer, AutoModelForTokenClassification # <-- CHANGE AutoModel class if pipeline_tag is different
model_id = "magicslabnu/GenomeOcean-100M-finetuned-prom_300_tata"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load model (Ensure the AutoModel class matches your task)
model = AutoModelForTokenClassification.from_pretrained(model_id)
# --- Inference Example ---
# Prepare your DNA sequence(s)
# Ensure sequence format matches what the tokenizer expects (e.g., spaces between bases if needed)
dna_sequence = "[Your example DNA sequence here, e.g., 'A C G T A C G T']"
# Tokenize the input
inputs = tokenizer(dna_sequence, return_tensors="pt") # "pt" for PyTorch
# Perform inference
# For Token Classification:
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
# You might need to map prediction IDs back to labels
print("Token predictions:", predictions)
# For Sequence Classification:
# outputs = model(**inputs)
# predictions = outputs.logits.softmax(dim=-1)
# print("Sequence probabilities:", predictions)
# -------------------------
# [Add code here to interpret the predictions based on your specific task
# e.g., mapping token IDs to labels like 'Promoter', 'Non-Promoter', 'TATA-box']