bert-base-multilingual-cased-2-contract-sections-classification-v4-50
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2447
- Accuracy Evaluate: 0.9625
- Precision Evaluate: 0.9524
- Recall Evaluate: 0.9635
- F1 Evaluate: 0.9558
- Accuracy Sklearn: 0.9625
- Precision Sklearn: 0.9657
- Recall Sklearn: 0.9625
- F1 Sklearn: 0.9631
- Acuracia Rotulo Objeto: 0.9917
- Acuracia Rotulo Obrigacoes: 0.9663
- Acuracia Rotulo Valor: 0.9427
- Acuracia Rotulo Vigencia: 0.9869
- Acuracia Rotulo Rescisao: 0.9114
- Acuracia Rotulo Foro: 0.9423
- Acuracia Rotulo Reajuste: 0.9715
- Acuracia Rotulo Fiscalizacao: 0.9306
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9746
- Acuracia Rotulo Casos Omissos: 0.9261
- Acuracia Rotulo Sancoes: 0.9817
- Acuracia Rotulo Dotacao Orcamentaria: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.2161 | 1.0 | 500 | 1.8294 | 0.568 | 0.6269 | 0.5325 | 0.4985 | 0.568 | 0.6153 | 0.568 | 0.5258 | 0.8740 | 0.8822 | 0.6361 | 0.5932 | 0.3823 | 0.4385 | 0.3950 | 0.2397 | 0.9163 | 0.0 | 0.8621 | 0.6972 | 0.0055 |
1.2279 | 2.0 | 1000 | 0.8815 | 0.8842 | 0.9052 | 0.8856 | 0.8882 | 0.8842 | 0.8958 | 0.8842 | 0.8825 | 0.9607 | 0.9394 | 0.9284 | 0.7375 | 0.9280 | 0.9385 | 0.9573 | 0.7319 | 0.9803 | 0.6087 | 0.9310 | 0.9266 | 0.9451 |
0.5798 | 3.0 | 1500 | 0.4362 | 0.9345 | 0.9364 | 0.9424 | 0.9383 | 0.9345 | 0.9376 | 0.9345 | 0.9346 | 0.9649 | 0.8485 | 0.9284 | 0.9764 | 0.9529 | 0.9385 | 0.9893 | 0.9022 | 0.9852 | 0.8841 | 0.9360 | 0.9450 | 1.0 |
0.3013 | 4.0 | 2000 | 0.2795 | 0.9415 | 0.9357 | 0.9502 | 0.9407 | 0.9415 | 0.9458 | 0.9415 | 0.9420 | 0.9731 | 0.8603 | 0.9312 | 0.9948 | 0.9335 | 0.9385 | 0.9929 | 0.9148 | 0.9852 | 0.9058 | 0.9409 | 0.9817 | 1.0 |
0.1844 | 5.0 | 2500 | 0.2176 | 0.949 | 0.9413 | 0.9549 | 0.9462 | 0.949 | 0.9521 | 0.949 | 0.9495 | 0.9835 | 0.9040 | 0.9484 | 0.9895 | 0.9197 | 0.9385 | 0.9680 | 0.9148 | 0.9951 | 0.9203 | 0.9409 | 0.9908 | 1.0 |
0.1245 | 6.0 | 3000 | 0.1780 | 0.9605 | 0.9536 | 0.9630 | 0.9572 | 0.9605 | 0.9619 | 0.9605 | 0.9606 | 0.9814 | 0.9545 | 0.9312 | 0.9869 | 0.9335 | 0.9385 | 0.9964 | 0.9148 | 0.9951 | 0.9638 | 0.9409 | 0.9817 | 1.0 |
0.0911 | 7.0 | 3500 | 0.1572 | 0.9643 | 0.9550 | 0.9658 | 0.9582 | 0.9643 | 0.9675 | 0.9643 | 0.9649 | 0.9938 | 0.9697 | 0.9427 | 0.9816 | 0.9169 | 0.9385 | 0.9964 | 0.9180 | 0.9951 | 0.9710 | 0.9409 | 0.9908 | 1.0 |
0.0708 | 8.0 | 4000 | 0.1551 | 0.963 | 0.9530 | 0.9661 | 0.9572 | 0.963 | 0.9664 | 0.963 | 0.9637 | 0.9855 | 0.9596 | 0.9398 | 0.9869 | 0.9114 | 0.9346 | 0.9964 | 0.9338 | 0.9951 | 0.9710 | 0.9458 | 1.0 | 1.0 |
0.0591 | 9.0 | 4500 | 0.1480 | 0.9617 | 0.9528 | 0.9620 | 0.9556 | 0.9617 | 0.9644 | 0.9617 | 0.9622 | 0.9917 | 0.9697 | 0.9484 | 0.9869 | 0.9114 | 0.9423 | 0.9680 | 0.9180 | 0.9951 | 0.9710 | 0.9310 | 0.9725 | 1.0 |
0.0489 | 10.0 | 5000 | 0.1541 | 0.962 | 0.9528 | 0.9627 | 0.9556 | 0.962 | 0.9652 | 0.962 | 0.9626 | 0.9917 | 0.9697 | 0.9484 | 0.9869 | 0.9114 | 0.9423 | 0.9680 | 0.9180 | 0.9951 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.0427 | 11.0 | 5500 | 0.1543 | 0.9635 | 0.9538 | 0.9656 | 0.9576 | 0.9635 | 0.9665 | 0.9635 | 0.9641 | 0.9917 | 0.9714 | 0.9456 | 0.9843 | 0.9114 | 0.9423 | 0.9644 | 0.9180 | 0.9951 | 0.9783 | 0.9507 | 1.0 | 1.0 |
0.0351 | 12.0 | 6000 | 0.1583 | 0.964 | 0.9552 | 0.9660 | 0.9587 | 0.964 | 0.9666 | 0.964 | 0.9645 | 0.9917 | 0.9714 | 0.9513 | 0.9869 | 0.9114 | 0.9385 | 0.9644 | 0.9180 | 1.0 | 0.9783 | 0.9458 | 1.0 | 1.0 |
0.03 | 13.0 | 6500 | 0.1687 | 0.961 | 0.9512 | 0.9623 | 0.9546 | 0.961 | 0.9642 | 0.961 | 0.9617 | 0.9917 | 0.9663 | 0.9513 | 0.9843 | 0.9114 | 0.9423 | 0.9466 | 0.9180 | 1.0 | 0.9710 | 0.9458 | 0.9817 | 1.0 |
0.029 | 14.0 | 7000 | 0.1652 | 0.9627 | 0.9544 | 0.9639 | 0.9578 | 0.9627 | 0.9647 | 0.9627 | 0.9631 | 0.9938 | 0.9697 | 0.9513 | 0.9843 | 0.9114 | 0.9423 | 0.9466 | 0.9211 | 1.0 | 0.9783 | 0.9507 | 0.9817 | 1.0 |
0.0239 | 15.0 | 7500 | 0.1638 | 0.9665 | 0.9566 | 0.9687 | 0.9606 | 0.9665 | 0.9695 | 0.9665 | 0.9671 | 0.9938 | 0.9697 | 0.9513 | 0.9869 | 0.9114 | 0.9462 | 0.9786 | 0.9306 | 1.0 | 0.9783 | 0.9458 | 1.0 | 1.0 |
0.0219 | 16.0 | 8000 | 0.1640 | 0.964 | 0.9542 | 0.9654 | 0.9578 | 0.964 | 0.9670 | 0.964 | 0.9646 | 0.9897 | 0.9697 | 0.9484 | 0.9869 | 0.9114 | 0.9423 | 0.9786 | 0.9180 | 1.0 | 0.9783 | 0.9458 | 0.9817 | 1.0 |
0.0204 | 17.0 | 8500 | 0.1653 | 0.9657 | 0.9560 | 0.9676 | 0.9600 | 0.9657 | 0.9683 | 0.9657 | 0.9662 | 0.9938 | 0.9663 | 0.9513 | 0.9869 | 0.9114 | 0.9462 | 0.9786 | 0.9338 | 1.0 | 0.9783 | 0.9409 | 0.9908 | 1.0 |
0.0187 | 18.0 | 9000 | 0.1824 | 0.9647 | 0.9552 | 0.9661 | 0.9590 | 0.9647 | 0.9671 | 0.9647 | 0.9652 | 0.9938 | 0.9646 | 0.9513 | 0.9869 | 0.9114 | 0.9385 | 0.9786 | 0.9338 | 1.0 | 0.9783 | 0.9409 | 0.9817 | 1.0 |
0.0165 | 19.0 | 9500 | 0.1762 | 0.9653 | 0.9558 | 0.9660 | 0.9587 | 0.9653 | 0.9686 | 0.9653 | 0.9659 | 0.9917 | 0.9764 | 0.9542 | 0.9869 | 0.9114 | 0.9423 | 0.9715 | 0.9211 | 1.0 | 0.9746 | 0.9458 | 0.9817 | 1.0 |
0.0147 | 20.0 | 10000 | 0.1952 | 0.9653 | 0.9578 | 0.9664 | 0.9610 | 0.9653 | 0.9669 | 0.9653 | 0.9655 | 0.9917 | 0.9680 | 0.9542 | 0.9869 | 0.9141 | 0.9385 | 0.9786 | 0.9338 | 1.0 | 0.9746 | 0.9409 | 0.9817 | 1.0 |
0.0134 | 21.0 | 10500 | 0.2101 | 0.964 | 0.9556 | 0.9648 | 0.9588 | 0.964 | 0.9660 | 0.964 | 0.9643 | 0.9917 | 0.9680 | 0.9570 | 0.9869 | 0.9114 | 0.9385 | 0.9680 | 0.9338 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0117 | 22.0 | 11000 | 0.1971 | 0.9647 | 0.9560 | 0.9656 | 0.9593 | 0.9647 | 0.9669 | 0.9647 | 0.9651 | 0.9938 | 0.9697 | 0.9513 | 0.9843 | 0.9114 | 0.9423 | 0.9786 | 0.9338 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0113 | 23.0 | 11500 | 0.2037 | 0.9645 | 0.9545 | 0.9655 | 0.9579 | 0.9645 | 0.9677 | 0.9645 | 0.9652 | 0.9917 | 0.9697 | 0.9542 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9338 | 1.0 | 0.9710 | 0.9409 | 0.9817 | 1.0 |
0.0108 | 24.0 | 12000 | 0.2033 | 0.9645 | 0.9542 | 0.9657 | 0.9579 | 0.9645 | 0.9677 | 0.9645 | 0.9652 | 0.9917 | 0.9663 | 0.9542 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9369 | 1.0 | 0.9746 | 0.9409 | 0.9817 | 1.0 |
0.0098 | 25.0 | 12500 | 0.1980 | 0.9647 | 0.9555 | 0.9655 | 0.9585 | 0.9647 | 0.9678 | 0.9647 | 0.9654 | 0.9917 | 0.9731 | 0.9484 | 0.9843 | 0.9114 | 0.9538 | 0.9715 | 0.9338 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.0096 | 26.0 | 13000 | 0.2104 | 0.9627 | 0.9534 | 0.9642 | 0.9567 | 0.9627 | 0.9659 | 0.9627 | 0.9634 | 0.9938 | 0.9613 | 0.9484 | 0.9816 | 0.9114 | 0.9385 | 0.9751 | 0.9369 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0083 | 27.0 | 13500 | 0.2138 | 0.9645 | 0.9548 | 0.9665 | 0.9582 | 0.9645 | 0.9681 | 0.9645 | 0.9652 | 0.9917 | 0.9680 | 0.9542 | 0.9869 | 0.9114 | 0.9385 | 0.9680 | 0.9338 | 1.0 | 0.9710 | 0.9409 | 1.0 | 1.0 |
0.0084 | 28.0 | 14000 | 0.2180 | 0.9633 | 0.9542 | 0.9646 | 0.9578 | 0.9633 | 0.9657 | 0.9633 | 0.9637 | 0.9917 | 0.9646 | 0.9484 | 0.9869 | 0.9114 | 0.9385 | 0.9680 | 0.9369 | 1.0 | 0.9710 | 0.9409 | 0.9817 | 1.0 |
0.0076 | 29.0 | 14500 | 0.2196 | 0.9623 | 0.9529 | 0.9635 | 0.9565 | 0.9623 | 0.9648 | 0.9623 | 0.9627 | 0.9917 | 0.9630 | 0.9398 | 0.9869 | 0.9141 | 0.9385 | 0.9715 | 0.9369 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.006 | 30.0 | 15000 | 0.2320 | 0.961 | 0.9511 | 0.9626 | 0.9545 | 0.961 | 0.9645 | 0.961 | 0.9617 | 0.9917 | 0.9663 | 0.9226 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9338 | 1.0 | 0.9746 | 0.9261 | 0.9908 | 1.0 |
0.0067 | 31.0 | 15500 | 0.2285 | 0.9627 | 0.9527 | 0.9654 | 0.9567 | 0.9627 | 0.9663 | 0.9627 | 0.9634 | 0.9917 | 0.9630 | 0.9284 | 0.9869 | 0.9114 | 0.9385 | 0.9786 | 0.9369 | 1.0 | 0.9746 | 0.9409 | 1.0 | 1.0 |
0.0068 | 32.0 | 16000 | 0.2252 | 0.9625 | 0.9530 | 0.9640 | 0.9566 | 0.9625 | 0.9652 | 0.9625 | 0.9630 | 0.9917 | 0.9646 | 0.9370 | 0.9869 | 0.9141 | 0.9385 | 0.9715 | 0.9338 | 1.0 | 0.9710 | 0.9409 | 0.9817 | 1.0 |
0.0062 | 33.0 | 16500 | 0.2291 | 0.963 | 0.9530 | 0.9641 | 0.9563 | 0.963 | 0.9664 | 0.963 | 0.9637 | 0.9917 | 0.9663 | 0.9427 | 0.9869 | 0.9114 | 0.9385 | 0.9786 | 0.9338 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.005 | 34.0 | 17000 | 0.2376 | 0.9627 | 0.9529 | 0.9641 | 0.9563 | 0.9627 | 0.9660 | 0.9627 | 0.9634 | 0.9917 | 0.9630 | 0.9456 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9369 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.0055 | 35.0 | 17500 | 0.2371 | 0.9627 | 0.9519 | 0.9640 | 0.9557 | 0.9627 | 0.9662 | 0.9627 | 0.9635 | 0.9917 | 0.9646 | 0.9398 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9369 | 1.0 | 0.9783 | 0.9310 | 0.9817 | 1.0 |
0.0059 | 36.0 | 18000 | 0.2300 | 0.9623 | 0.9532 | 0.9633 | 0.9562 | 0.9623 | 0.9653 | 0.9623 | 0.9628 | 0.9917 | 0.9663 | 0.9427 | 0.9869 | 0.9114 | 0.9423 | 0.9751 | 0.9274 | 1.0 | 0.9710 | 0.9261 | 0.9817 | 1.0 |
0.0045 | 37.0 | 18500 | 0.2400 | 0.9625 | 0.9525 | 0.9639 | 0.9561 | 0.9625 | 0.9656 | 0.9625 | 0.9631 | 0.9917 | 0.9630 | 0.9370 | 0.9869 | 0.9114 | 0.9423 | 0.9786 | 0.9369 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.0042 | 38.0 | 19000 | 0.2514 | 0.9627 | 0.9532 | 0.9638 | 0.9564 | 0.9627 | 0.9660 | 0.9627 | 0.9634 | 0.9917 | 0.9646 | 0.9456 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9338 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.0044 | 39.0 | 19500 | 0.2389 | 0.9635 | 0.9533 | 0.9646 | 0.9570 | 0.9635 | 0.9665 | 0.9635 | 0.9641 | 0.9917 | 0.9646 | 0.9513 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9369 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0045 | 40.0 | 20000 | 0.2412 | 0.9613 | 0.9509 | 0.9625 | 0.9544 | 0.9613 | 0.9647 | 0.9613 | 0.9619 | 0.9917 | 0.9663 | 0.9226 | 0.9869 | 0.9114 | 0.9423 | 0.9751 | 0.9306 | 1.0 | 0.9783 | 0.9261 | 0.9817 | 1.0 |
0.0039 | 41.0 | 20500 | 0.2447 | 0.9617 | 0.9516 | 0.9629 | 0.9550 | 0.9617 | 0.9652 | 0.9617 | 0.9625 | 0.9917 | 0.9663 | 0.9370 | 0.9869 | 0.9114 | 0.9423 | 0.9715 | 0.9274 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.0033 | 42.0 | 21000 | 0.2442 | 0.962 | 0.9515 | 0.9633 | 0.9551 | 0.962 | 0.9655 | 0.962 | 0.9627 | 0.9917 | 0.9646 | 0.9370 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9306 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0042 | 43.0 | 21500 | 0.2431 | 0.963 | 0.9527 | 0.9640 | 0.9561 | 0.963 | 0.9665 | 0.963 | 0.9637 | 0.9917 | 0.9663 | 0.9484 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9306 | 1.0 | 0.9710 | 0.9310 | 0.9817 | 1.0 |
0.0031 | 44.0 | 22000 | 0.2500 | 0.9625 | 0.9521 | 0.9636 | 0.9556 | 0.9625 | 0.9661 | 0.9625 | 0.9632 | 0.9917 | 0.9646 | 0.9398 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9369 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.004 | 45.0 | 22500 | 0.2495 | 0.9627 | 0.9520 | 0.9640 | 0.9557 | 0.9627 | 0.9663 | 0.9627 | 0.9635 | 0.9917 | 0.9646 | 0.9398 | 0.9869 | 0.9114 | 0.9385 | 0.9751 | 0.9369 | 1.0 | 0.9746 | 0.9310 | 0.9817 | 1.0 |
0.0028 | 46.0 | 23000 | 0.2459 | 0.9627 | 0.9525 | 0.9639 | 0.9561 | 0.9627 | 0.9660 | 0.9627 | 0.9634 | 0.9917 | 0.9646 | 0.9398 | 0.9869 | 0.9114 | 0.9423 | 0.9751 | 0.9369 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.0028 | 47.0 | 23500 | 0.2476 | 0.963 | 0.9527 | 0.9640 | 0.9562 | 0.963 | 0.9663 | 0.963 | 0.9637 | 0.9917 | 0.9646 | 0.9484 | 0.9869 | 0.9114 | 0.9385 | 0.9715 | 0.9369 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.003 | 48.0 | 24000 | 0.2437 | 0.9625 | 0.9524 | 0.9641 | 0.9559 | 0.9625 | 0.9659 | 0.9625 | 0.9632 | 0.9917 | 0.9663 | 0.9370 | 0.9869 | 0.9114 | 0.9423 | 0.9751 | 0.9306 | 1.0 | 0.9746 | 0.9261 | 0.9908 | 1.0 |
0.0034 | 49.0 | 24500 | 0.2444 | 0.9623 | 0.9524 | 0.9632 | 0.9556 | 0.9623 | 0.9655 | 0.9623 | 0.9629 | 0.9917 | 0.9680 | 0.9398 | 0.9869 | 0.9114 | 0.9423 | 0.9751 | 0.9243 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
0.0027 | 50.0 | 25000 | 0.2447 | 0.9625 | 0.9524 | 0.9635 | 0.9558 | 0.9625 | 0.9657 | 0.9625 | 0.9631 | 0.9917 | 0.9663 | 0.9427 | 0.9869 | 0.9114 | 0.9423 | 0.9715 | 0.9306 | 1.0 | 0.9746 | 0.9261 | 0.9817 | 1.0 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for marcelovidigal/bert-base-multilingual-cased-2-contract-sections-classification-v4-50
Base model
google-bert/bert-base-multilingual-cased