Visualize in Weights & Biases Visualize in Weights & Biases

bert-base-multilingual-cased-2-contract-sections-classification-v4-50

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2447
  • Accuracy Evaluate: 0.9625
  • Precision Evaluate: 0.9524
  • Recall Evaluate: 0.9635
  • F1 Evaluate: 0.9558
  • Accuracy Sklearn: 0.9625
  • Precision Sklearn: 0.9657
  • Recall Sklearn: 0.9625
  • F1 Sklearn: 0.9631
  • Acuracia Rotulo Objeto: 0.9917
  • Acuracia Rotulo Obrigacoes: 0.9663
  • Acuracia Rotulo Valor: 0.9427
  • Acuracia Rotulo Vigencia: 0.9869
  • Acuracia Rotulo Rescisao: 0.9114
  • Acuracia Rotulo Foro: 0.9423
  • Acuracia Rotulo Reajuste: 0.9715
  • Acuracia Rotulo Fiscalizacao: 0.9306
  • Acuracia Rotulo Publicacao: 1.0
  • Acuracia Rotulo Pagamento: 0.9746
  • Acuracia Rotulo Casos Omissos: 0.9261
  • Acuracia Rotulo Sancoes: 0.9817
  • Acuracia Rotulo Dotacao Orcamentaria: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
2.2161 1.0 500 1.8294 0.568 0.6269 0.5325 0.4985 0.568 0.6153 0.568 0.5258 0.8740 0.8822 0.6361 0.5932 0.3823 0.4385 0.3950 0.2397 0.9163 0.0 0.8621 0.6972 0.0055
1.2279 2.0 1000 0.8815 0.8842 0.9052 0.8856 0.8882 0.8842 0.8958 0.8842 0.8825 0.9607 0.9394 0.9284 0.7375 0.9280 0.9385 0.9573 0.7319 0.9803 0.6087 0.9310 0.9266 0.9451
0.5798 3.0 1500 0.4362 0.9345 0.9364 0.9424 0.9383 0.9345 0.9376 0.9345 0.9346 0.9649 0.8485 0.9284 0.9764 0.9529 0.9385 0.9893 0.9022 0.9852 0.8841 0.9360 0.9450 1.0
0.3013 4.0 2000 0.2795 0.9415 0.9357 0.9502 0.9407 0.9415 0.9458 0.9415 0.9420 0.9731 0.8603 0.9312 0.9948 0.9335 0.9385 0.9929 0.9148 0.9852 0.9058 0.9409 0.9817 1.0
0.1844 5.0 2500 0.2176 0.949 0.9413 0.9549 0.9462 0.949 0.9521 0.949 0.9495 0.9835 0.9040 0.9484 0.9895 0.9197 0.9385 0.9680 0.9148 0.9951 0.9203 0.9409 0.9908 1.0
0.1245 6.0 3000 0.1780 0.9605 0.9536 0.9630 0.9572 0.9605 0.9619 0.9605 0.9606 0.9814 0.9545 0.9312 0.9869 0.9335 0.9385 0.9964 0.9148 0.9951 0.9638 0.9409 0.9817 1.0
0.0911 7.0 3500 0.1572 0.9643 0.9550 0.9658 0.9582 0.9643 0.9675 0.9643 0.9649 0.9938 0.9697 0.9427 0.9816 0.9169 0.9385 0.9964 0.9180 0.9951 0.9710 0.9409 0.9908 1.0
0.0708 8.0 4000 0.1551 0.963 0.9530 0.9661 0.9572 0.963 0.9664 0.963 0.9637 0.9855 0.9596 0.9398 0.9869 0.9114 0.9346 0.9964 0.9338 0.9951 0.9710 0.9458 1.0 1.0
0.0591 9.0 4500 0.1480 0.9617 0.9528 0.9620 0.9556 0.9617 0.9644 0.9617 0.9622 0.9917 0.9697 0.9484 0.9869 0.9114 0.9423 0.9680 0.9180 0.9951 0.9710 0.9310 0.9725 1.0
0.0489 10.0 5000 0.1541 0.962 0.9528 0.9627 0.9556 0.962 0.9652 0.962 0.9626 0.9917 0.9697 0.9484 0.9869 0.9114 0.9423 0.9680 0.9180 0.9951 0.9710 0.9310 0.9817 1.0
0.0427 11.0 5500 0.1543 0.9635 0.9538 0.9656 0.9576 0.9635 0.9665 0.9635 0.9641 0.9917 0.9714 0.9456 0.9843 0.9114 0.9423 0.9644 0.9180 0.9951 0.9783 0.9507 1.0 1.0
0.0351 12.0 6000 0.1583 0.964 0.9552 0.9660 0.9587 0.964 0.9666 0.964 0.9645 0.9917 0.9714 0.9513 0.9869 0.9114 0.9385 0.9644 0.9180 1.0 0.9783 0.9458 1.0 1.0
0.03 13.0 6500 0.1687 0.961 0.9512 0.9623 0.9546 0.961 0.9642 0.961 0.9617 0.9917 0.9663 0.9513 0.9843 0.9114 0.9423 0.9466 0.9180 1.0 0.9710 0.9458 0.9817 1.0
0.029 14.0 7000 0.1652 0.9627 0.9544 0.9639 0.9578 0.9627 0.9647 0.9627 0.9631 0.9938 0.9697 0.9513 0.9843 0.9114 0.9423 0.9466 0.9211 1.0 0.9783 0.9507 0.9817 1.0
0.0239 15.0 7500 0.1638 0.9665 0.9566 0.9687 0.9606 0.9665 0.9695 0.9665 0.9671 0.9938 0.9697 0.9513 0.9869 0.9114 0.9462 0.9786 0.9306 1.0 0.9783 0.9458 1.0 1.0
0.0219 16.0 8000 0.1640 0.964 0.9542 0.9654 0.9578 0.964 0.9670 0.964 0.9646 0.9897 0.9697 0.9484 0.9869 0.9114 0.9423 0.9786 0.9180 1.0 0.9783 0.9458 0.9817 1.0
0.0204 17.0 8500 0.1653 0.9657 0.9560 0.9676 0.9600 0.9657 0.9683 0.9657 0.9662 0.9938 0.9663 0.9513 0.9869 0.9114 0.9462 0.9786 0.9338 1.0 0.9783 0.9409 0.9908 1.0
0.0187 18.0 9000 0.1824 0.9647 0.9552 0.9661 0.9590 0.9647 0.9671 0.9647 0.9652 0.9938 0.9646 0.9513 0.9869 0.9114 0.9385 0.9786 0.9338 1.0 0.9783 0.9409 0.9817 1.0
0.0165 19.0 9500 0.1762 0.9653 0.9558 0.9660 0.9587 0.9653 0.9686 0.9653 0.9659 0.9917 0.9764 0.9542 0.9869 0.9114 0.9423 0.9715 0.9211 1.0 0.9746 0.9458 0.9817 1.0
0.0147 20.0 10000 0.1952 0.9653 0.9578 0.9664 0.9610 0.9653 0.9669 0.9653 0.9655 0.9917 0.9680 0.9542 0.9869 0.9141 0.9385 0.9786 0.9338 1.0 0.9746 0.9409 0.9817 1.0
0.0134 21.0 10500 0.2101 0.964 0.9556 0.9648 0.9588 0.964 0.9660 0.964 0.9643 0.9917 0.9680 0.9570 0.9869 0.9114 0.9385 0.9680 0.9338 1.0 0.9746 0.9310 0.9817 1.0
0.0117 22.0 11000 0.1971 0.9647 0.9560 0.9656 0.9593 0.9647 0.9669 0.9647 0.9651 0.9938 0.9697 0.9513 0.9843 0.9114 0.9423 0.9786 0.9338 1.0 0.9746 0.9310 0.9817 1.0
0.0113 23.0 11500 0.2037 0.9645 0.9545 0.9655 0.9579 0.9645 0.9677 0.9645 0.9652 0.9917 0.9697 0.9542 0.9869 0.9114 0.9385 0.9715 0.9338 1.0 0.9710 0.9409 0.9817 1.0
0.0108 24.0 12000 0.2033 0.9645 0.9542 0.9657 0.9579 0.9645 0.9677 0.9645 0.9652 0.9917 0.9663 0.9542 0.9869 0.9114 0.9385 0.9715 0.9369 1.0 0.9746 0.9409 0.9817 1.0
0.0098 25.0 12500 0.1980 0.9647 0.9555 0.9655 0.9585 0.9647 0.9678 0.9647 0.9654 0.9917 0.9731 0.9484 0.9843 0.9114 0.9538 0.9715 0.9338 1.0 0.9710 0.9310 0.9817 1.0
0.0096 26.0 13000 0.2104 0.9627 0.9534 0.9642 0.9567 0.9627 0.9659 0.9627 0.9634 0.9938 0.9613 0.9484 0.9816 0.9114 0.9385 0.9751 0.9369 1.0 0.9746 0.9310 0.9817 1.0
0.0083 27.0 13500 0.2138 0.9645 0.9548 0.9665 0.9582 0.9645 0.9681 0.9645 0.9652 0.9917 0.9680 0.9542 0.9869 0.9114 0.9385 0.9680 0.9338 1.0 0.9710 0.9409 1.0 1.0
0.0084 28.0 14000 0.2180 0.9633 0.9542 0.9646 0.9578 0.9633 0.9657 0.9633 0.9637 0.9917 0.9646 0.9484 0.9869 0.9114 0.9385 0.9680 0.9369 1.0 0.9710 0.9409 0.9817 1.0
0.0076 29.0 14500 0.2196 0.9623 0.9529 0.9635 0.9565 0.9623 0.9648 0.9623 0.9627 0.9917 0.9630 0.9398 0.9869 0.9141 0.9385 0.9715 0.9369 1.0 0.9710 0.9310 0.9817 1.0
0.006 30.0 15000 0.2320 0.961 0.9511 0.9626 0.9545 0.961 0.9645 0.961 0.9617 0.9917 0.9663 0.9226 0.9869 0.9114 0.9385 0.9715 0.9338 1.0 0.9746 0.9261 0.9908 1.0
0.0067 31.0 15500 0.2285 0.9627 0.9527 0.9654 0.9567 0.9627 0.9663 0.9627 0.9634 0.9917 0.9630 0.9284 0.9869 0.9114 0.9385 0.9786 0.9369 1.0 0.9746 0.9409 1.0 1.0
0.0068 32.0 16000 0.2252 0.9625 0.9530 0.9640 0.9566 0.9625 0.9652 0.9625 0.9630 0.9917 0.9646 0.9370 0.9869 0.9141 0.9385 0.9715 0.9338 1.0 0.9710 0.9409 0.9817 1.0
0.0062 33.0 16500 0.2291 0.963 0.9530 0.9641 0.9563 0.963 0.9664 0.963 0.9637 0.9917 0.9663 0.9427 0.9869 0.9114 0.9385 0.9786 0.9338 1.0 0.9710 0.9310 0.9817 1.0
0.005 34.0 17000 0.2376 0.9627 0.9529 0.9641 0.9563 0.9627 0.9660 0.9627 0.9634 0.9917 0.9630 0.9456 0.9869 0.9114 0.9385 0.9751 0.9369 1.0 0.9710 0.9310 0.9817 1.0
0.0055 35.0 17500 0.2371 0.9627 0.9519 0.9640 0.9557 0.9627 0.9662 0.9627 0.9635 0.9917 0.9646 0.9398 0.9869 0.9114 0.9385 0.9715 0.9369 1.0 0.9783 0.9310 0.9817 1.0
0.0059 36.0 18000 0.2300 0.9623 0.9532 0.9633 0.9562 0.9623 0.9653 0.9623 0.9628 0.9917 0.9663 0.9427 0.9869 0.9114 0.9423 0.9751 0.9274 1.0 0.9710 0.9261 0.9817 1.0
0.0045 37.0 18500 0.2400 0.9625 0.9525 0.9639 0.9561 0.9625 0.9656 0.9625 0.9631 0.9917 0.9630 0.9370 0.9869 0.9114 0.9423 0.9786 0.9369 1.0 0.9746 0.9261 0.9817 1.0
0.0042 38.0 19000 0.2514 0.9627 0.9532 0.9638 0.9564 0.9627 0.9660 0.9627 0.9634 0.9917 0.9646 0.9456 0.9869 0.9114 0.9385 0.9751 0.9338 1.0 0.9746 0.9261 0.9817 1.0
0.0044 39.0 19500 0.2389 0.9635 0.9533 0.9646 0.9570 0.9635 0.9665 0.9635 0.9641 0.9917 0.9646 0.9513 0.9869 0.9114 0.9385 0.9715 0.9369 1.0 0.9746 0.9310 0.9817 1.0
0.0045 40.0 20000 0.2412 0.9613 0.9509 0.9625 0.9544 0.9613 0.9647 0.9613 0.9619 0.9917 0.9663 0.9226 0.9869 0.9114 0.9423 0.9751 0.9306 1.0 0.9783 0.9261 0.9817 1.0
0.0039 41.0 20500 0.2447 0.9617 0.9516 0.9629 0.9550 0.9617 0.9652 0.9617 0.9625 0.9917 0.9663 0.9370 0.9869 0.9114 0.9423 0.9715 0.9274 1.0 0.9710 0.9310 0.9817 1.0
0.0033 42.0 21000 0.2442 0.962 0.9515 0.9633 0.9551 0.962 0.9655 0.962 0.9627 0.9917 0.9646 0.9370 0.9869 0.9114 0.9385 0.9751 0.9306 1.0 0.9746 0.9310 0.9817 1.0
0.0042 43.0 21500 0.2431 0.963 0.9527 0.9640 0.9561 0.963 0.9665 0.963 0.9637 0.9917 0.9663 0.9484 0.9869 0.9114 0.9385 0.9751 0.9306 1.0 0.9710 0.9310 0.9817 1.0
0.0031 44.0 22000 0.2500 0.9625 0.9521 0.9636 0.9556 0.9625 0.9661 0.9625 0.9632 0.9917 0.9646 0.9398 0.9869 0.9114 0.9385 0.9751 0.9369 1.0 0.9746 0.9261 0.9817 1.0
0.004 45.0 22500 0.2495 0.9627 0.9520 0.9640 0.9557 0.9627 0.9663 0.9627 0.9635 0.9917 0.9646 0.9398 0.9869 0.9114 0.9385 0.9751 0.9369 1.0 0.9746 0.9310 0.9817 1.0
0.0028 46.0 23000 0.2459 0.9627 0.9525 0.9639 0.9561 0.9627 0.9660 0.9627 0.9634 0.9917 0.9646 0.9398 0.9869 0.9114 0.9423 0.9751 0.9369 1.0 0.9746 0.9261 0.9817 1.0
0.0028 47.0 23500 0.2476 0.963 0.9527 0.9640 0.9562 0.963 0.9663 0.963 0.9637 0.9917 0.9646 0.9484 0.9869 0.9114 0.9385 0.9715 0.9369 1.0 0.9746 0.9261 0.9817 1.0
0.003 48.0 24000 0.2437 0.9625 0.9524 0.9641 0.9559 0.9625 0.9659 0.9625 0.9632 0.9917 0.9663 0.9370 0.9869 0.9114 0.9423 0.9751 0.9306 1.0 0.9746 0.9261 0.9908 1.0
0.0034 49.0 24500 0.2444 0.9623 0.9524 0.9632 0.9556 0.9623 0.9655 0.9623 0.9629 0.9917 0.9680 0.9398 0.9869 0.9114 0.9423 0.9751 0.9243 1.0 0.9746 0.9261 0.9817 1.0
0.0027 50.0 25000 0.2447 0.9625 0.9524 0.9635 0.9558 0.9625 0.9657 0.9625 0.9631 0.9917 0.9663 0.9427 0.9869 0.9114 0.9423 0.9715 0.9306 1.0 0.9746 0.9261 0.9817 1.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for marcelovidigal/bert-base-multilingual-cased-2-contract-sections-classification-v4-50

Finetuned
(716)
this model