beit-ena24
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the ena24 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9751
- Accuracy: 0.6809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.8853 | 0.1302 | 100 | 2.8477 | 0.2176 |
2.7962 | 0.2604 | 200 | 2.5644 | 0.1985 |
2.4273 | 0.3906 | 300 | 2.3036 | 0.2885 |
2.1587 | 0.5208 | 400 | 2.1759 | 0.3305 |
2.1721 | 0.6510 | 500 | 2.0160 | 0.3405 |
2.0539 | 0.7812 | 600 | 1.8444 | 0.4084 |
1.7687 | 0.9115 | 700 | 1.7824 | 0.4069 |
1.7545 | 1.0417 | 800 | 1.6203 | 0.5092 |
1.5865 | 1.1719 | 900 | 1.5315 | 0.5176 |
1.3489 | 1.3021 | 1000 | 1.6056 | 0.5084 |
1.2064 | 1.4323 | 1100 | 1.2743 | 0.5878 |
1.1963 | 1.5625 | 1200 | 1.1703 | 0.6336 |
1.0333 | 1.6927 | 1300 | 1.1410 | 0.6412 |
1.1828 | 1.8229 | 1400 | 1.0684 | 0.6473 |
0.6996 | 1.9531 | 1500 | 0.9751 | 0.6809 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mbiarreta/beit-ena24
Base model
microsoft/beit-base-patch16-224