rubert-tiny2-ner-finetuned
This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3182
- Precision: 0.8107
- Recall: 0.8650
- F1: 0.8370
- Accuracy: 0.9176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 50 | 1.6494 | 0.0901 | 0.0341 | 0.0494 | 0.4330 |
No log | 2.0 | 100 | 1.1966 | 0.4701 | 0.4223 | 0.4449 | 0.6464 |
No log | 3.0 | 150 | 0.8823 | 0.5788 | 0.6122 | 0.5950 | 0.7567 |
No log | 4.0 | 200 | 0.6968 | 0.6465 | 0.7151 | 0.6791 | 0.8211 |
No log | 5.0 | 250 | 0.5777 | 0.7052 | 0.7696 | 0.7360 | 0.8569 |
No log | 6.0 | 300 | 0.4985 | 0.7534 | 0.8129 | 0.7820 | 0.8863 |
No log | 7.0 | 350 | 0.4437 | 0.7764 | 0.8305 | 0.8026 | 0.8958 |
No log | 8.0 | 400 | 0.4044 | 0.7862 | 0.8413 | 0.8129 | 0.9030 |
No log | 9.0 | 450 | 0.3762 | 0.7953 | 0.8498 | 0.8216 | 0.9080 |
0.8776 | 10.0 | 500 | 0.3559 | 0.8003 | 0.8558 | 0.8271 | 0.9105 |
0.8776 | 11.0 | 550 | 0.3407 | 0.7995 | 0.8562 | 0.8269 | 0.9131 |
0.8776 | 12.0 | 600 | 0.3295 | 0.8055 | 0.8594 | 0.8316 | 0.9155 |
0.8776 | 13.0 | 650 | 0.3232 | 0.8059 | 0.8618 | 0.8329 | 0.9161 |
0.8776 | 14.0 | 700 | 0.3196 | 0.8088 | 0.8610 | 0.8341 | 0.9170 |
0.8776 | 15.0 | 750 | 0.3182 | 0.8107 | 0.8650 | 0.8370 | 0.9176 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support