rubert-tiny2-ner-finetuned

This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3182
  • Precision: 0.8107
  • Recall: 0.8650
  • F1: 0.8370
  • Accuracy: 0.9176

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 50 1.6494 0.0901 0.0341 0.0494 0.4330
No log 2.0 100 1.1966 0.4701 0.4223 0.4449 0.6464
No log 3.0 150 0.8823 0.5788 0.6122 0.5950 0.7567
No log 4.0 200 0.6968 0.6465 0.7151 0.6791 0.8211
No log 5.0 250 0.5777 0.7052 0.7696 0.7360 0.8569
No log 6.0 300 0.4985 0.7534 0.8129 0.7820 0.8863
No log 7.0 350 0.4437 0.7764 0.8305 0.8026 0.8958
No log 8.0 400 0.4044 0.7862 0.8413 0.8129 0.9030
No log 9.0 450 0.3762 0.7953 0.8498 0.8216 0.9080
0.8776 10.0 500 0.3559 0.8003 0.8558 0.8271 0.9105
0.8776 11.0 550 0.3407 0.7995 0.8562 0.8269 0.9131
0.8776 12.0 600 0.3295 0.8055 0.8594 0.8316 0.9155
0.8776 13.0 650 0.3232 0.8059 0.8618 0.8329 0.9161
0.8776 14.0 700 0.3196 0.8088 0.8610 0.8341 0.9170
0.8776 15.0 750 0.3182 0.8107 0.8650 0.8370 0.9176

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
23
Safetensors
Model size
29.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for milfey21/rubert-tiny2-ner-finetuned

Finetuned
(50)
this model
Finetunes
1 model