Files changed (1) hide show
  1. README.md +171 -157
README.md CHANGED
@@ -1,158 +1,172 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-14B-Instruct
5
- tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: outputs/lora-out
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
- <details><summary>See axolotl config</summary>
17
-
18
- axolotl version: `0.5.0`
19
- ```yaml
20
- base_model: Qwen/Qwen2.5-14B-Instruct
21
-
22
- load_in_8bit: false
23
- load_in_4bit: false
24
- strict: false
25
-
26
- datasets:
27
- - path: output.jsonl
28
- type: alpaca
29
-
30
- special_tokens:
31
- bos_token:
32
- eos_token: "<|im_end|>"
33
- pad_token: "<|endoftext|>"
34
-
35
- dataset_prepared_path:
36
- val_set_size: 0.05
37
- output_dir: ./outputs/lora-out
38
-
39
- sequence_len: 4096
40
- sample_packing: false
41
- pad_to_sequence_len: true
42
-
43
- adapter: lora
44
- lora_model_dir:
45
- lora_r: 8
46
- lora_alpha: 16
47
- lora_dropout: 0.05
48
- lora_target_linear: true
49
- lora_fan_in_fan_out:
50
- lora_target_modules:
51
- - gate_proj
52
- - down_proj
53
- - up_proj
54
- - q_proj
55
- - v_proj
56
- - k_proj
57
- - o_proj
58
-
59
- wandb_project: axolotl_gmatrix
60
- wandb_entity: mssong
61
- wandb_watch:
62
- wandb_run_id:
63
- wandb_log_model:
64
-
65
- gradient_accumulation_steps: 2
66
- micro_batch_size: 1
67
- num_epochs: 3
68
- optimizer:
69
- lr_scheduler: cosine
70
- learning_rate: 0.00006
71
- train_on_inputs:
72
- group_by_length: false
73
- bf16: true
74
- fp16: false
75
- tf32: false
76
- gradient_checkpointing: true
77
- early_stopping_patience: 4
78
- local_rank:
79
- logging_steps: 100
80
- xformers_attention:
81
- flash_attention: true
82
- warmup_ratio: 0.05
83
- #warmup_steps: 100
84
- eval_steps: 100
85
- save_steps: 100
86
- save_total_limit: 2
87
- eval_sample_packing:
88
- debug:
89
- deepspeed:
90
- weight_decay: 0.01
91
- fsdp:
92
- fsdp_config:
93
- trust_remote_code: true
94
- ```
95
-
96
- </details><br>
97
-
98
- # outputs/lora-out
99
-
100
- This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
101
- It achieves the following results on the evaluation set:
102
- - Loss: 0.0875
103
-
104
- ## Model description
105
-
106
- More information needed
107
-
108
- ## Intended uses & limitations
109
-
110
- More information needed
111
-
112
- ## Training and evaluation data
113
-
114
- More information needed
115
-
116
- ## Training procedure
117
-
118
- ### Training hyperparameters
119
-
120
- The following hyperparameters were used during training:
121
- - learning_rate: 6e-05
122
- - train_batch_size: 1
123
- - eval_batch_size: 1
124
- - seed: 42
125
- - gradient_accumulation_steps: 2
126
- - total_train_batch_size: 2
127
- - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
128
- - lr_scheduler_type: cosine
129
- - lr_scheduler_warmup_steps: 162
130
- - num_epochs: 3
131
-
132
- ### Training results
133
-
134
- | Training Loss | Epoch | Step | Validation Loss |
135
- |:-------------:|:------:|:----:|:---------------:|
136
- | No log | 0.0009 | 1 | 0.4243 |
137
- | 0.2465 | 0.0923 | 100 | 0.1338 |
138
- | 0.0425 | 0.1847 | 200 | 0.1110 |
139
- | 0.0333 | 0.2770 | 300 | 0.1051 |
140
- | 0.0319 | 0.3693 | 400 | 0.0933 |
141
- | 0.0257 | 0.4617 | 500 | 0.0886 |
142
- | 0.0245 | 0.5540 | 600 | 0.0898 |
143
- | 0.0262 | 0.6464 | 700 | 0.0889 |
144
- | 0.025 | 0.7387 | 800 | 0.0827 |
145
- | 0.0221 | 0.8310 | 900 | 0.0813 |
146
- | 0.0207 | 0.9234 | 1000 | 0.0901 |
147
- | 0.0219 | 1.0157 | 1100 | 0.0878 |
148
- | 0.0132 | 1.1080 | 1200 | 0.0890 |
149
- | 0.0154 | 1.2004 | 1300 | 0.0875 |
150
-
151
-
152
- ### Framework versions
153
-
154
- - PEFT 0.13.2
155
- - Transformers 4.46.1
156
- - Pytorch 2.3.1+cu121
157
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  - Tokenizers 0.20.3
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-14B-Instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ language:
8
+ - zho
9
+ - eng
10
+ - fra
11
+ - spa
12
+ - por
13
+ - deu
14
+ - ita
15
+ - rus
16
+ - jpn
17
+ - kor
18
+ - vie
19
+ - tha
20
+ - ara
21
+ model-index:
22
+ - name: outputs/lora-out
23
+ results: []
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
30
+ <details><summary>See axolotl config</summary>
31
+
32
+ axolotl version: `0.5.0`
33
+ ```yaml
34
+ base_model: Qwen/Qwen2.5-14B-Instruct
35
+
36
+ load_in_8bit: false
37
+ load_in_4bit: false
38
+ strict: false
39
+
40
+ datasets:
41
+ - path: output.jsonl
42
+ type: alpaca
43
+
44
+ special_tokens:
45
+ bos_token:
46
+ eos_token: "<|im_end|>"
47
+ pad_token: "<|endoftext|>"
48
+
49
+ dataset_prepared_path:
50
+ val_set_size: 0.05
51
+ output_dir: ./outputs/lora-out
52
+
53
+ sequence_len: 4096
54
+ sample_packing: false
55
+ pad_to_sequence_len: true
56
+
57
+ adapter: lora
58
+ lora_model_dir:
59
+ lora_r: 8
60
+ lora_alpha: 16
61
+ lora_dropout: 0.05
62
+ lora_target_linear: true
63
+ lora_fan_in_fan_out:
64
+ lora_target_modules:
65
+ - gate_proj
66
+ - down_proj
67
+ - up_proj
68
+ - q_proj
69
+ - v_proj
70
+ - k_proj
71
+ - o_proj
72
+
73
+ wandb_project: axolotl_gmatrix
74
+ wandb_entity: mssong
75
+ wandb_watch:
76
+ wandb_run_id:
77
+ wandb_log_model:
78
+
79
+ gradient_accumulation_steps: 2
80
+ micro_batch_size: 1
81
+ num_epochs: 3
82
+ optimizer:
83
+ lr_scheduler: cosine
84
+ learning_rate: 0.00006
85
+ train_on_inputs:
86
+ group_by_length: false
87
+ bf16: true
88
+ fp16: false
89
+ tf32: false
90
+ gradient_checkpointing: true
91
+ early_stopping_patience: 4
92
+ local_rank:
93
+ logging_steps: 100
94
+ xformers_attention:
95
+ flash_attention: true
96
+ warmup_ratio: 0.05
97
+ #warmup_steps: 100
98
+ eval_steps: 100
99
+ save_steps: 100
100
+ save_total_limit: 2
101
+ eval_sample_packing:
102
+ debug:
103
+ deepspeed:
104
+ weight_decay: 0.01
105
+ fsdp:
106
+ fsdp_config:
107
+ trust_remote_code: true
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # outputs/lora-out
113
+
114
+ This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 0.0875
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 6e-05
136
+ - train_batch_size: 1
137
+ - eval_batch_size: 1
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 2
140
+ - total_train_batch_size: 2
141
+ - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 162
144
+ - num_epochs: 3
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:------:|:----:|:---------------:|
150
+ | No log | 0.0009 | 1 | 0.4243 |
151
+ | 0.2465 | 0.0923 | 100 | 0.1338 |
152
+ | 0.0425 | 0.1847 | 200 | 0.1110 |
153
+ | 0.0333 | 0.2770 | 300 | 0.1051 |
154
+ | 0.0319 | 0.3693 | 400 | 0.0933 |
155
+ | 0.0257 | 0.4617 | 500 | 0.0886 |
156
+ | 0.0245 | 0.5540 | 600 | 0.0898 |
157
+ | 0.0262 | 0.6464 | 700 | 0.0889 |
158
+ | 0.025 | 0.7387 | 800 | 0.0827 |
159
+ | 0.0221 | 0.8310 | 900 | 0.0813 |
160
+ | 0.0207 | 0.9234 | 1000 | 0.0901 |
161
+ | 0.0219 | 1.0157 | 1100 | 0.0878 |
162
+ | 0.0132 | 1.1080 | 1200 | 0.0890 |
163
+ | 0.0154 | 1.2004 | 1300 | 0.0875 |
164
+
165
+
166
+ ### Framework versions
167
+
168
+ - PEFT 0.13.2
169
+ - Transformers 4.46.1
170
+ - Pytorch 2.3.1+cu121
171
+ - Datasets 3.0.1
172
  - Tokenizers 0.20.3