Improve language tag
#2
by
lbourdois
- opened
README.md
CHANGED
@@ -1,43 +1,55 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
datasets:
|
4 |
-
- sajjadhadi/disease-diagnosis-dataset
|
5 |
-
base_model:
|
6 |
-
- Qwen/Qwen2.5-3B
|
7 |
-
pipeline_tag: text-classification
|
8 |
-
tags:
|
9 |
-
- biology
|
10 |
-
language:
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
print(f"Predicted diagnosis: {model.config.id2label[prediction]}")
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- sajjadhadi/disease-diagnosis-dataset
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2.5-3B
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
tags:
|
9 |
+
- biology
|
10 |
+
language:
|
11 |
+
- zho
|
12 |
+
- eng
|
13 |
+
- fra
|
14 |
+
- spa
|
15 |
+
- por
|
16 |
+
- deu
|
17 |
+
- ita
|
18 |
+
- rus
|
19 |
+
- jpn
|
20 |
+
- kor
|
21 |
+
- vie
|
22 |
+
- tha
|
23 |
+
- ara
|
24 |
+
library_name: adapter-transformers
|
25 |
+
---
|
26 |
+
|
27 |
+
# Disease Diagnosis Adapter
|
28 |
+
|
29 |
+
A fine-tuned adapter for the Qwen/Qwen2.5-3B model specialized in disease diagnosis and classification.
|
30 |
+
Trained through MLX and MPI, to test performance and accuracy.
|
31 |
+
|
32 |
+
## Overview
|
33 |
+
|
34 |
+
This adapter enhances the base Ministral-3b-instruct model to improve performance on medical diagnosis tasks. It was trained on the [disease-diagnosis-dataset](https://huggingface.co/datasets/sajjadhadi/disease-diagnosis-dataset).
|
35 |
+
The data is over-saturated in some diagnosis, I limit the number of diagnosis and take a limit number of them as training tags.
|
36 |
+
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
42 |
+
|
43 |
+
# Load model and tokenizer
|
44 |
+
model_name = "naifenn/diagnosis-adapter"
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
|
48 |
+
# Example input
|
49 |
+
text = "Patient presents with fever, cough, and fatigue for 3 days."
|
50 |
+
inputs = tokenizer(text, return_tensors="pt")
|
51 |
+
|
52 |
+
# Get prediction
|
53 |
+
outputs = model(**inputs)
|
54 |
+
prediction = outputs.logits.argmax(-1).item()
|
55 |
print(f"Predicted diagnosis: {model.config.id2label[prediction]}")
|