creation

from transformers import AutoModelForCausalLM
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from accelerate import infer_auto_device_map, init_empty_weights

model_id  = "Qwen/Qwen3-32B"
model_out = model_id.split("/")[1] + ".w4a16"

device_map = []

with init_empty_weights():
    dummy_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="bfloat16")
    device_map = infer_auto_device_map(dummy_model, no_split_module_classes=dummy_model._no_split_modules)
    del dummy_model

for k, v in device_map.items():
    device_map[k] = 'cpu'

model = AutoModelForCausalLM.from_pretrained(
  model_id,
  device_map=device_map,
  torch_dtype="bfloat16",
)

recipe = QuantizationModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"], dampening_frac=0.1)

oneshot(model=model, recipe=recipe, output_dir=model_out)
Downloads last month
23
Safetensors
Model size
5.7B params
Tensor type
I64
I32
BF16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for nytopop/Qwen3-32B.w4a16

Base model

Qwen/Qwen3-32B
Quantized
(33)
this model