Int8 quant for optimized performance on Ampere.
usage
uv venv --python 3.12
uv pip install sglang[all] --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
uv run python -m sglang.launch_server --model-path nytopop/Qwen3-4B.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3
creation
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
model_id = "Qwen/Qwen3-4B"
model_out = "Qwen3-4B.w8a8"
num_samples = 256
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = [
SmoothQuantModifier(smoothing_strength=0.7),
GPTQModifier(sequential=True,targets="Linear",scheme="W8A8",ignore=["lm_head"],dampening_frac=0.01),
]
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
output_dir=model_out,
)
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support