creation
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
model_id = "canopylabs/orpheus-3b-0.1-ft"
model_out = "orpheus-3b-0.1-ft.w8a8"
num_samples = 64
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = [
SmoothQuantModifier(
smoothing_strength=0.7,
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"],
],
),
GPTQModifier(
sequential=True,
targets="Linear",
scheme="W8A8",
ignore=["lm_head"],
dampening_frac=0.01,
)
]
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained(model_out)
- Downloads last month
- 175
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nytopop/orpheus-3b-0.1-ft.w8a8
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
canopylabs/orpheus-3b-0.1-pretrained
Finetuned
canopylabs/orpheus-3b-0.1-ft