The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:
- Extracts both the logical structure AND researcher intuition from academic papers - Adopts the persona of researchers "before experiments" to capture exploratory thinking - Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model
It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.
I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.
- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity - I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions
My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.
This significantly reduces computation costs while expanding reasoning dataset domain coverage.
I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!
This first episode explores mathematical reasoning datasets:
- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains - open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models. - facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.