HugGAN Community

non-profit

AI & ML interests

GANs!

Recent Activity

huggan's activity

merve 
posted an update 1 day ago
clem 
posted an update 1 day ago
clem 
posted an update 2 days ago
view post
Post
1210
The meta-llama org just crossed 40,000 followers on Hugging Face. Grateful for all their impact on the field sharing the Llama weights openly and much more!

We need more of this from all other big tech to make the AI more open, collaborative and beneficial to all!
merve 
posted an update 3 days ago
view post
Post
2429
Meta released Llama Guard 4 and new Prompt Guard 2 models 🔥

Llama Guard 4 is a new model to filter model inputs/outputs both text-only and image 🛡️ use it before and after LLMs/VLMs! meta-llama/Llama-Guard-4-12B

Prompt Guard 2 22M & 86M are smol models to prevent model jailbreaks and prompt injections ⚔ meta-llama/Llama-Prompt-Guard-2-22M meta-llama/Llama-Guard-4-12B
Both come with new release of transformers 🤗

Try the model right away 👉🏻https://github.com/huggingface/huggingface-llama-recipes/blob/main/llama_guard_4.ipynb

Read our blog to learn more and easily get started 👉🏻 https://huggingface.co/blog/llama-guard-4 🦙
  • 1 reply
·
merve 
posted an update 8 days ago
view post
Post
3893
Don't sleep on new AI at Meta Vision-Language release! 🔥

facebook/perception-encoder-67f977c9a65ca5895a7f6ba1
facebook/perception-lm-67f9783f171948c383ee7498

Meta dropped swiss army knives for vision with A2.0 license 👏
> image/video encoders for vision language modelling and spatial understanding (object detection etc) 👏
> The vision LM outperforms InternVL3 and Qwen2.5VL 👏
> They also release gigantic video and image datasets

The authors attempt to come up with single versatile vision encoder to align on diverse set of tasks.

They trained Perception Encoder (PE) Core: a new state-of-the-art family of vision encoders that can be aligned for both vision-language and spatial tasks. For zero-shot image tasks, it outperforms latest sota SigLIP2 👏



> Among fine-tuned ones, first one is PE-Spatial. It's a model to detect bounding boxes, segmentation, depth estimation and it outperforms all other models 😮



> Second one is PLM, Perception Language Model, where they combine PE-Core with Qwen2.5 LM 7B. it outperforms all other models (including InternVL3 which was trained with Qwen2.5LM too!)

The authors release the following checkpoints in sizes base, large and giant:

> 3 PE-Core checkpoints (224, 336, 448)
> 2 PE-Lang checkpoints (L, G)
> One PE-Spatial (G, 448)
> 3 PLM (1B, 3B, 8B)
> Datasets



Authors release following datasets 📑
> PE Video: Gigantic video datasete of 1M videos with 120k expert annotations ⏯️
> PLM-Video and PLM-Image: Human and auto-annotated image and video datasets on region-based tasks
> PLM-VideoBench: New video benchmark on MCQA
  • 2 replies
·
merve 
posted an update 10 days ago
view post
Post
3330
New foundation model on image and video captioning just dropped by NVIDIA AI 🔥

Describe Anything Model (DAM) is a 3B vision language model to generate detailed captions with localized references 😮

The team released the models, the dataset, a new benchmark and a demo 🤩 nvidia/describe-anything-680825bb8f5e41ff0785834c

Most of the vision LMs focus on image as a whole, lacking localized references in captions, and not taking in visual prompts (points, boxes, drawings around objects)

DAM addresses this on two levels: new vision backbone that takes in focal crops and the image itself, and a large scale dataset 👀

They generate a dataset by extending existing segmentation and referring expression generation datasets like REFCOCO, by passing in the images and classes to VLMs and generating captions.

Lastly, they also release a new benchmark again with self-supervision, they use an LLM to evaluate the detailed captions focusing on localization 👏
clem 
posted an update 11 days ago
view post
Post
3902
Energy is a massive constraint for AI but do you even know what energy your chatGPT convos are using?

We're trying to change this by releasing ChatUI-energy, the first interface where you see in real-time what energy your AI conversations consume. Great work from @jdelavande powered by spaces & TGI, available for a dozen of open-source models like Llama, Mistral, Qwen, Gemma and more.

jdelavande/chat-ui-energy

Should all chat interfaces have this? Just like ingredients have to be shown on products you buy, we need more transparency in AI for users!
  • 3 replies
·
clem 
posted an update 11 days ago
view post
Post
2890
Just crossed half a million public apps on Hugging Face. A new public app is created every minute these days 🤯🤯🤯

What's your favorite? http://hf.co/spaces
  • 3 replies
·
clem 
posted an update 17 days ago
view post
Post
1450
You can now bill your inference costs from all our inference partners (together, fireworks, fal, sambanova, cerebras, hyperbolic,...) to your Hugging Face organization.

Useful to drive more company-wide usage of AI without the billing headaches!
  • 1 reply
·
merve 
posted an update 19 days ago
view post
Post
4418
sooo many open AI releases past week, let's summarize! 🤗
merve/april-11-releases-67fcd78be33d241c0977b9d2

multimodal
> Moonshot AI released Kimi VL Thinking, first working open-source multimodal reasoning model and Kimi VL Instruct, both 16B MoEs with 3B active params (OS)
> InternVL3 released based on Qwen2.5VL, 7 ckpts with various sizes (1B to 78B)

LLMs
> NVIDIA released Llama-3_1-Nemotron-Ultra-253B-v1 an LLM built on Llama 405B for reasoning, chat and tool use
> Agentica released DeepCoder-14B-Preview, fine-tuned version of DeepSeek-R1-Distilled-Qwen-14B on problem-test pairs, along with the compiled dataset
> Zyphra/ZR1-1.5B is a new small reasoning LLM built on R1-Distill-1.5B (OS)
> Skywork-OR1-32B-Preview is a new reasoning model by Skywork

Image Generation
> HiDream releases three new models, HiDream I1 Dev, I1 Full, and I1 fast for image generation (OS)

*OS ones have Apache 2.0 or MIT licenses
·
clem 
posted an update 28 days ago
view post
Post
2647
Llama 4 is in transformers!

Fun example using the instruction-tuned Maverick model responding about two images, using tensor parallel for maximum speed.

From https://huggingface.co/blog/llama4-release
  • 1 reply
·
clem 
posted an update 30 days ago
view post
Post
1983
Llama models (arguably the most successful open AI models of all times) just represented 3% of total model downloads on Hugging Face in March.

People and media like stories of winner takes all & one model/company to rule them all but the reality is much more nuanced than this!

Kudos to all the small AI builders out there!
  • 2 replies
·
clem 
posted an update about 1 month ago
view post
Post
1345
Now in Enterprise Hub organizations, you can centralize your billing not only for HF usage but also inference through our inference partners.

Will prevent some headaches for your finance & accounting teams haha (so feel free to share that with them).
  • 3 replies
·
clem 
posted an update about 1 month ago
view post
Post
4018
Before 2020, most of the AI field was open and collaborative. For me, that was the key factor that accelerated scientific progress and made the impossible possible—just look at the “T” in ChatGPT, which comes from the Transformer architecture openly shared by Google.

Then came the myth that AI was too dangerous to share, and companies started optimizing for short-term revenue. That led many major AI labs and researchers to stop sharing and collaborating.

With OAI and sama now saying they're willing to share open weights again, we have a real chance to return to a golden age of AI progress and democratization—powered by openness and collaboration, in the US and around the world.

This is incredibly exciting. Let’s go, open science and open-source AI!
·