Hugging Face

Enterprise
company
Verified
Activity Feed

AI & ML interests

The AI community building the future.

Recent Activity

sayakpaul  updated a dataset about 12 hours ago
huggingface/diffusers-metadata
evijit  updated a dataset about 15 hours ago
huggingface/policy-docs
nielsr  updated a Space about 19 hours ago
huggingface/ai-deadlines
View all activity

Articles

huggingface's activity

[FEEDBACK] Follow

14
#14 opened over 1 year ago by
victor
fdaudens 
posted an update 2 days ago
view post
Post
492
🤯 Gemma 3's image analysis blew me away!

Tested 2 ways to extract airplane registration numbers from photos with 12B model:

1️⃣ Gradio app w/API link (underrated feature IMO) + ZeroGPU infra on Hugging Face in Google Colab. Fast & free.

2️⃣ LMStudio + local processing (100% private). Running this powerhouse on a MacBook w/16GB RAM is wild! 🚀

Colab: https://colab.research.google.com/drive/1YmmaP0IDEu98CLDppAAK9kbQZ7lFnLZ1?usp=sharing
clem 
posted an update 2 days ago
view post
Post
3311
We just crossed 1,500,000 public models on Hugging Face (and 500k spaces, 330k datasets, 50k papers). One new repository is created every 15 seconds. Congratulations all!
·
AdinaY 
posted an update 3 days ago
AdinaY 
posted an update 3 days ago
jsulz 
posted an update 3 days ago
view post
Post
1215
It's finally here ❤️

Build faster than ever with lightning fast upload and download speeds starting today on the Hub ⚡

Xet storage is rolling out access across the Hub - join the waitlist here https://huggingface.co/join/xet

You can apply for yourself, or your entire organization. Head over to your account settings for more information or join anywhere you see the Xet logo on a repository you know.

Have questions? Join the conversation below 👇 or open a discussion on the Xet team page xet-team/README
·
fdaudens 
posted an update 3 days ago
view post
Post
1134
Ever wanted 45 min with one of AI’s most fascinating minds? Was with @thomwolf at HumanX Vegas. Sharing my notes of his Q&A with the press—completely changed how I think about AI’s future:

1️⃣ The next wave of successful AI companies won’t be defined by who has the best model but by who builds the most useful real-world solutions. "We all have engines in our cars, but that’s rarely the only reason we buy one. We expect it to work well, and that’s enough. LLMs will be the same."

2️⃣ Big players are pivoting: "Closed-source companies—OpenAI being the first—have largely shifted from LLM announcements to product announcements."

3️⃣ Open source is changing everything: "DeepSeek was open source AI’s ChatGPT moment. Basically, everyone outside the bubble realized you can get a model for free—and it’s just as good as the paid ones."

4️⃣ Product innovation is being democratized: Take Manus, for example—they built a product on top of Anthropic’s models that’s "actually better than Anthropic’s own product for now, in terms of agents." This proves that anyone can build great products with existing models.

We’re entering a "multi-LLM world," where models are becoming commoditized, and all the tools to build are readily available—just look at the flurry of daily new releases on Hugging Face.

Thom's comparison to the internet era is spot-on: "In the beginning you made a lot of money by making websites... but nowadays the huge internet companies are not the companies that built websites. Like Airbnb, Uber, Facebook, they just use the internet as a medium to make something for real life use cases."

Love to hear your thoughts on this shift!
  • 1 reply
·
eliebak 
posted an update 4 days ago
view post
Post
1372
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
·
AdinaY 
posted an update 4 days ago
AdinaY 
posted an update 4 days ago
lewtun 
posted an update 4 days ago
view post
Post
1880
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems 🧑‍💻

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪

Together with the models, we are releasing:

📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co/blog/open-r1/update-3
  • 1 reply
·