Hugging Face

Enterprise
company
Verified
Activity Feed

AI & ML interests

The AI community building the future.

Recent Activity

sayakpaul  updated a dataset about 17 hours ago
huggingface/diffusers-metadata
evijit  updated a dataset about 19 hours ago
huggingface/policy-docs
nielsr  updated a Space about 24 hours ago
huggingface/ai-deadlines
View all activity

Articles

huggingface's activity

[FEEDBACK] Follow

14
#14 opened over 1 year ago by
victor
fdaudens 
posted an update 3 days ago
view post
Post
511
🤯 Gemma 3's image analysis blew me away!

Tested 2 ways to extract airplane registration numbers from photos with 12B model:

1️⃣ Gradio app w/API link (underrated feature IMO) + ZeroGPU infra on Hugging Face in Google Colab. Fast & free.

2️⃣ LMStudio + local processing (100% private). Running this powerhouse on a MacBook w/16GB RAM is wild! 🚀

Colab: https://colab.research.google.com/drive/1YmmaP0IDEu98CLDppAAK9kbQZ7lFnLZ1?usp=sharing
clem 
posted an update 3 days ago
view post
Post
3527
We just crossed 1,500,000 public models on Hugging Face (and 500k spaces, 330k datasets, 50k papers). One new repository is created every 15 seconds. Congratulations all!
·
fdaudens 
posted an update 4 days ago
view post
Post
1146
Ever wanted 45 min with one of AI’s most fascinating minds? Was with @thomwolf at HumanX Vegas. Sharing my notes of his Q&A with the press—completely changed how I think about AI’s future:

1️⃣ The next wave of successful AI companies won’t be defined by who has the best model but by who builds the most useful real-world solutions. "We all have engines in our cars, but that’s rarely the only reason we buy one. We expect it to work well, and that’s enough. LLMs will be the same."

2️⃣ Big players are pivoting: "Closed-source companies—OpenAI being the first—have largely shifted from LLM announcements to product announcements."

3️⃣ Open source is changing everything: "DeepSeek was open source AI’s ChatGPT moment. Basically, everyone outside the bubble realized you can get a model for free—and it’s just as good as the paid ones."

4️⃣ Product innovation is being democratized: Take Manus, for example—they built a product on top of Anthropic’s models that’s "actually better than Anthropic’s own product for now, in terms of agents." This proves that anyone can build great products with existing models.

We’re entering a "multi-LLM world," where models are becoming commoditized, and all the tools to build are readily available—just look at the flurry of daily new releases on Hugging Face.

Thom's comparison to the internet era is spot-on: "In the beginning you made a lot of money by making websites... but nowadays the huge internet companies are not the companies that built websites. Like Airbnb, Uber, Facebook, they just use the internet as a medium to make something for real life use cases."

Love to hear your thoughts on this shift!
  • 1 reply
·
thomwolf 
posted an update 4 days ago
view post
Post
2122
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: ⚡️OlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
eliebak 
posted an update 4 days ago
view post
Post
1379
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
·
fdaudens 
posted an update 5 days ago
view post
Post
1701
🔥The Open R1 team just dropped OlympicCoder and it's wild:

- 7B model outperforms Claude 3.7 Sonnet on IOI benchmark (yes, 7B!!)
- 32B crushes all open-weight models tested, even those 100x larger 🤯

Open-sourcing the future of code reasoning! 🚀

Check it out https://huggingface.co/blog/open-r1/update-3
julien-c 
posted an update 5 days ago
view post
Post
2187
Important notice 🚨

For Inference Providers who have built support for our Billing API (currently: Fal, Novita, HF-Inference – with more coming soon), we've started enabling Pay as you go (=PAYG)

What this means is that you can use those Inference Providers beyond the free included credits, and they're charged to your HF account.

You can see it on this view: any provider that does not have a "Billing disabled" badge, is PAYG-compatible.
BrigitteTousi 
posted an update 5 days ago
BrigitteTousi 
posted an update 6 days ago
view post
Post
3622
Regardless of X being down or not, so glad I can rely on HF Posts for AI news ❤️🤗
  • 1 reply
·
fdaudens 
posted an update 7 days ago
view post
Post
5672
Honored to be named among their 12 pioneers and power players in the news industry in the 2025 Tech Trends Report from Future Today Strategy Group.

Incredible group to be part of - each person is doing groundbreaking work at the intersection of AI and journalism. Worth following them all: they're consistently sharing practical insights on building the future of news.

Take the time to read this report, it's packed with insights as always. The news & information section's #1 insight hits hard: "The most substantive economic impact of AI to date has been licensing payouts for a handful of big publishers. The competition will start shifting in the year ahead to separate AI 'haves' that have positioned themselves to grow from the 'have-nots.'"

This AI-driven divide is something I've been really concerned about. Now is the time to build more than ever!

👉 Full report here: https://ftsg.com/wp-content/uploads/2025/03/FTSG_2025_TR_FINAL_LINKED.pdf
  • 2 replies
·
clem 
posted an update 8 days ago
view post
Post
7064
I was chatting with @peakji , one of the cofounders of Manu AI, who told me he was on Hugging Face (very cool!).

He shared an interesting insight which is that agentic capabilities might be more of an alignment problem rather than a foundational capability issue. Similar to the difference between GPT-3 and InstructGPT, some open-source foundation models are simply trained to 'answer everything in one response regardless of the complexity of the question' - after all, that's the user preference in chatbot use cases. Just a bit of post-training on agentic trajectories can make an immediate and dramatic difference.

As a thank you to the community, he shared 100 invite code first-come first serve, just use “HUGGINGFACE” to get access!
·