results / README.md
padilfm's picture
Upload processor
a076677 verified
metadata
base_model: google/vit-base-patch16-224-in21k
datasets:
  - imagefolder
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: results
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.49375
            name: Accuracy

results

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6499
  • Accuracy: 0.4938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0569 1.0 20 2.0360 0.1938
1.9499 2.0 40 1.9751 0.325
1.8401 3.0 60 1.8969 0.4125
1.7302 4.0 80 1.8159 0.4625
1.6452 5.0 100 1.7533 0.4437
1.5509 6.0 120 1.7124 0.4938
1.4928 7.0 140 1.6806 0.5125
1.4412 8.0 160 1.6631 0.4938
1.407 9.0 180 1.6530 0.5
1.4025 10.0 200 1.6499 0.4938

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1