Stable-Diffusion-v1.5: Optimized for Mobile Deployment
State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v1.5 found here.
This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Image generation
- Model Stats:
- Input: Text prompt to generate image
- QNN-SDK: 2.28
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
TextEncoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.548 ms | 0 - 3 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
TextEncoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.347 ms | 0 - 21 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
TextEncoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.053 ms | 0 - 14 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.901 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA7255P ADP | SA7255P | QNN | 30.749 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.585 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.548 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8775P ADP | SA8775P | QNN | 5.874 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 30.749 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.581 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.874 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 114.402 ms | 0 - 2 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
UnetQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 81.02 ms | 0 - 18 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
UnetQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 61.556 ms | 0 - 15 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 116.85 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA7255P ADP | SA7255P | QNN | 1587.305 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 114.391 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 114.482 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8775P ADP | SA8775P | QNN | 131.759 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 1587.305 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 114.914 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 131.759 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 296.059 ms | 0 - 70 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
VaeDecoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 230.689 ms | 0 - 315 MB | W8A16 | NPU | Stable-Diffusion-v1.5.so |
VaeDecoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 270.158 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA7255P ADP | SA7255P | QNN | 4461.686 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 286.526 ms | 0 - 4 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 286.182 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8775P ADP | SA8775P | QNN | 301.173 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 4461.686 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 281.374 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 301.173 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
Installation
Install the package via pip:
pip install "qai-hub-models[stable-diffusion-v1-5-w8a16-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.stable_diffusion_v1_5_w8a16_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.stable_diffusion_v1_5_w8a16_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v1_5_w8a16_quantized.export
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 4.5
Estimated peak memory usage (MB): [0, 3]
Total # Ops : 437
Compute Unit(s) : NPU (437 ops)
------------------------------------------------------------
UnetQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 114.4
Estimated peak memory usage (MB): [0, 2]
Total # Ops : 4149
Compute Unit(s) : NPU (4149 ops)
------------------------------------------------------------
VaeDecoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 296.1
Estimated peak memory usage (MB): [0, 70]
Total # Ops : 189
Compute Unit(s) : NPU (189 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v1.5's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Stable-Diffusion-v1.5 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.