rafaelsandroni's picture
dev-v2-20240827005911
a5d8e1f verified
|
raw
history blame
1.82 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v2-xlarge-mnli
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ms-deberta-v2-xlarge-mnli-finetuned-pt
    results: []

ms-deberta-v2-xlarge-mnli-finetuned-pt

This model is a fine-tuned version of microsoft/deberta-v2-xlarge-mnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7274
  • Accuracy: 0.8571
  • Precision: 0.4286
  • Recall: 0.5
  • F1: 0.4615
  • Ratio: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 3
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.8996 1.5385 10 0.6120 0.8571 0.4286 0.5 0.4615 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1