train_cola_1744902669
This model is a fine-tuned version of google/gemma-3-1b-it on the cola dataset. It achieves the following results on the evaluation set:
- Loss: 0.1136
- Num Input Tokens Seen: 31253176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.1486 | 0.4158 | 200 | 0.1388 | 156832 |
0.1359 | 0.8316 | 400 | 0.1436 | 313248 |
0.1519 | 1.2474 | 600 | 0.1377 | 469520 |
0.1529 | 1.6632 | 800 | 0.1216 | 625360 |
0.1103 | 2.0790 | 1000 | 0.1448 | 782304 |
0.0885 | 2.4948 | 1200 | 0.1172 | 938560 |
0.1365 | 2.9106 | 1400 | 0.1182 | 1094144 |
0.0822 | 3.3264 | 1600 | 0.1136 | 1250544 |
0.0472 | 3.7422 | 1800 | 0.1163 | 1407440 |
0.0569 | 4.1580 | 2000 | 0.1181 | 1563512 |
0.0738 | 4.5738 | 2200 | 0.1314 | 1719064 |
0.0523 | 4.9896 | 2400 | 0.1549 | 1875384 |
0.0289 | 5.4054 | 2600 | 0.1586 | 2031440 |
0.0208 | 5.8212 | 2800 | 0.1612 | 2187952 |
0.0186 | 6.2370 | 3000 | 0.1915 | 2344864 |
0.0309 | 6.6528 | 3200 | 0.2197 | 2500448 |
0.0053 | 7.0686 | 3400 | 0.2014 | 2656400 |
0.0009 | 7.4844 | 3600 | 0.2372 | 2812912 |
0.0028 | 7.9002 | 3800 | 0.2015 | 2968816 |
0.0336 | 8.3160 | 4000 | 0.2057 | 3124448 |
0.0461 | 8.7318 | 4200 | 0.2184 | 3280320 |
0.0188 | 9.1476 | 4400 | 0.2262 | 3437072 |
0.0194 | 9.5634 | 4600 | 0.2845 | 3593520 |
0.0212 | 9.9792 | 4800 | 0.2370 | 3750544 |
0.0049 | 10.3950 | 5000 | 0.2759 | 3905920 |
0.0018 | 10.8108 | 5200 | 0.2150 | 4063008 |
0.0027 | 11.2266 | 5400 | 0.1926 | 4219472 |
0.0052 | 11.6424 | 5600 | 0.2233 | 4376048 |
0.001 | 12.0582 | 5800 | 0.3083 | 4531752 |
0.0015 | 12.4740 | 6000 | 0.2678 | 4687112 |
0.0072 | 12.8898 | 6200 | 0.2843 | 4843464 |
0.0117 | 13.3056 | 6400 | 0.3738 | 4999648 |
0.0599 | 13.7214 | 6600 | 0.3714 | 5157152 |
0.0025 | 14.1372 | 6800 | 0.2460 | 5312328 |
0.0005 | 14.5530 | 7000 | 0.3300 | 5468680 |
0.0206 | 14.9688 | 7200 | 0.3044 | 5624776 |
0.0012 | 15.3846 | 7400 | 0.3596 | 5782032 |
0.0001 | 15.8004 | 7600 | 0.4537 | 5938000 |
0.0187 | 16.2162 | 7800 | 0.4085 | 6094536 |
0.0204 | 16.6320 | 8000 | 0.3620 | 6250760 |
0.0135 | 17.0478 | 8200 | 0.5138 | 6406616 |
0.0025 | 17.4636 | 8400 | 0.4107 | 6563416 |
0.0004 | 17.8794 | 8600 | 0.3036 | 6719288 |
0.0086 | 18.2952 | 8800 | 0.4243 | 6875592 |
0.0238 | 18.7110 | 9000 | 0.3896 | 7032392 |
0.0003 | 19.1268 | 9200 | 0.3224 | 7188120 |
0.0335 | 19.5426 | 9400 | 0.3270 | 7344760 |
0.0025 | 19.9584 | 9600 | 0.2940 | 7501144 |
0.029 | 20.3742 | 9800 | 0.2817 | 7657160 |
0.0 | 20.7900 | 10000 | 0.4502 | 7813128 |
0.0196 | 21.2058 | 10200 | 0.3967 | 7969880 |
0.0003 | 21.6216 | 10400 | 0.3231 | 8126392 |
0.0102 | 22.0374 | 10600 | 0.4725 | 8282480 |
0.0002 | 22.4532 | 10800 | 0.4422 | 8438992 |
0.0022 | 22.8690 | 11000 | 0.4707 | 8595376 |
0.0002 | 23.2848 | 11200 | 0.5725 | 8751352 |
0.0046 | 23.7006 | 11400 | 0.3873 | 8907960 |
0.0116 | 24.1164 | 11600 | 0.4293 | 9064424 |
0.0002 | 24.5322 | 11800 | 0.3991 | 9220456 |
0.0 | 24.9480 | 12000 | 0.3167 | 9376488 |
0.0 | 25.3638 | 12200 | 0.5012 | 9533208 |
0.0 | 25.7796 | 12400 | 0.4632 | 9689464 |
0.0 | 26.1954 | 12600 | 0.4233 | 9845048 |
0.009 | 26.6112 | 12800 | 0.4824 | 10001784 |
0.008 | 27.0270 | 13000 | 0.5094 | 10157800 |
0.0 | 27.4428 | 13200 | 0.3998 | 10313128 |
0.0005 | 27.8586 | 13400 | 0.3729 | 10469384 |
0.0 | 28.2744 | 13600 | 0.4658 | 10625944 |
0.0002 | 28.6902 | 13800 | 0.3126 | 10782456 |
0.0 | 29.1060 | 14000 | 0.4560 | 10938304 |
0.0019 | 29.5218 | 14200 | 0.4240 | 11094528 |
0.0038 | 29.9376 | 14400 | 0.4524 | 11250976 |
0.0001 | 30.3534 | 14600 | 0.4690 | 11406672 |
0.0 | 30.7692 | 14800 | 0.4113 | 11562768 |
0.0072 | 31.1850 | 15000 | 0.3631 | 11719016 |
0.0 | 31.6008 | 15200 | 0.4143 | 11875368 |
0.0014 | 32.0166 | 15400 | 0.3420 | 12031048 |
0.0 | 32.4324 | 15600 | 0.3402 | 12187432 |
0.0002 | 32.8482 | 15800 | 0.3676 | 12343432 |
0.0 | 33.2640 | 16000 | 0.3827 | 12500472 |
0.0001 | 33.6798 | 16200 | 0.3322 | 12656248 |
0.0001 | 34.0956 | 16400 | 0.3601 | 12811752 |
0.0001 | 34.5114 | 16600 | 0.3241 | 12968104 |
0.0 | 34.9272 | 16800 | 0.3508 | 13124392 |
0.0 | 35.3430 | 17000 | 0.4569 | 13281144 |
0.0 | 35.7588 | 17200 | 0.4360 | 13437720 |
0.0048 | 36.1746 | 17400 | 0.4481 | 13594448 |
0.0 | 36.5904 | 17600 | 0.4795 | 13750544 |
0.0032 | 37.0062 | 17800 | 0.4704 | 13906304 |
0.0 | 37.4220 | 18000 | 0.3902 | 14062784 |
0.0 | 37.8378 | 18200 | 0.4358 | 14219168 |
0.0 | 38.2536 | 18400 | 0.4856 | 14375024 |
0.0039 | 38.6694 | 18600 | 0.3733 | 14530800 |
0.0365 | 39.0852 | 18800 | 0.3963 | 14687808 |
0.0 | 39.5010 | 19000 | 0.3972 | 14843360 |
0.0001 | 39.9168 | 19200 | 0.3093 | 14999808 |
0.042 | 40.3326 | 19400 | 0.3385 | 15155496 |
0.0001 | 40.7484 | 19600 | 0.3630 | 15311688 |
0.0 | 41.1642 | 19800 | 0.3730 | 15468264 |
0.0029 | 41.5800 | 20000 | 0.3523 | 15624072 |
0.0001 | 41.9958 | 20200 | 0.4160 | 15780456 |
0.0 | 42.4116 | 20400 | 0.4530 | 15936432 |
0.0019 | 42.8274 | 20600 | 0.4244 | 16092272 |
0.0 | 43.2432 | 20800 | 0.4572 | 16249048 |
0.0 | 43.6590 | 21000 | 0.3548 | 16405368 |
0.0041 | 44.0748 | 21200 | 0.3602 | 16561000 |
0.0 | 44.4906 | 21400 | 0.4284 | 16718312 |
0.0 | 44.9064 | 21600 | 0.4154 | 16874632 |
0.0 | 45.3222 | 21800 | 0.4509 | 17031680 |
0.0 | 45.7380 | 22000 | 0.4369 | 17188288 |
0.0 | 46.1538 | 22200 | 0.5120 | 17345048 |
0.0 | 46.5696 | 22400 | 0.4886 | 17501560 |
0.0051 | 46.9854 | 22600 | 0.5075 | 17657336 |
0.0 | 47.4012 | 22800 | 0.5012 | 17813576 |
0.0 | 47.8170 | 23000 | 0.4887 | 17970024 |
0.0 | 48.2328 | 23200 | 0.5224 | 18126280 |
0.0023 | 48.6486 | 23400 | 0.5204 | 18282568 |
0.0 | 49.0644 | 23600 | 0.5279 | 18438872 |
0.0 | 49.4802 | 23800 | 0.5578 | 18595416 |
0.0054 | 49.8960 | 24000 | 0.4464 | 18751672 |
0.0 | 50.3119 | 24200 | 0.4530 | 18906848 |
0.0 | 50.7277 | 24400 | 0.4825 | 19064192 |
0.0 | 51.1435 | 24600 | 0.4913 | 19219856 |
0.0 | 51.5593 | 24800 | 0.5009 | 19376464 |
0.0 | 51.9751 | 25000 | 0.5192 | 19532272 |
0.0029 | 52.3909 | 25200 | 0.5196 | 19688288 |
0.0 | 52.8067 | 25400 | 0.5195 | 19844672 |
0.0 | 53.2225 | 25600 | 0.5287 | 20001552 |
0.0 | 53.6383 | 25800 | 0.5364 | 20157424 |
0.003 | 54.0541 | 26000 | 0.5265 | 20313440 |
0.0025 | 54.4699 | 26200 | 0.5382 | 20469664 |
0.0058 | 54.8857 | 26400 | 0.5314 | 20625984 |
0.002 | 55.3015 | 26600 | 0.5449 | 20781904 |
0.0 | 55.7173 | 26800 | 0.5369 | 20938512 |
0.0 | 56.1331 | 27000 | 0.5501 | 21095008 |
0.0 | 56.5489 | 27200 | 0.5638 | 21251264 |
0.0 | 56.9647 | 27400 | 0.5525 | 21407744 |
0.0 | 57.3805 | 27600 | 0.5526 | 21564560 |
0.0 | 57.7963 | 27800 | 0.5543 | 21720560 |
0.0 | 58.2121 | 28000 | 0.5647 | 21877024 |
0.0 | 58.6279 | 28200 | 0.5636 | 22033344 |
0.0 | 59.0437 | 28400 | 0.5684 | 22189872 |
0.0 | 59.4595 | 28600 | 0.5754 | 22345712 |
0.0 | 59.8753 | 28800 | 0.5927 | 22502352 |
0.0 | 60.2911 | 29000 | 0.5581 | 22658440 |
0.0 | 60.7069 | 29200 | 0.5676 | 22814056 |
0.0 | 61.1227 | 29400 | 0.5812 | 22970680 |
0.0 | 61.5385 | 29600 | 0.5788 | 23126776 |
0.0 | 61.9543 | 29800 | 0.5783 | 23283064 |
0.0 | 62.3701 | 30000 | 0.5960 | 23440000 |
0.0035 | 62.7859 | 30200 | 0.5771 | 23596224 |
0.0 | 63.2017 | 30400 | 0.5874 | 23751880 |
0.0 | 63.6175 | 30600 | 0.5837 | 23907624 |
0.0 | 64.0333 | 30800 | 0.5827 | 24063864 |
0.0 | 64.4491 | 31000 | 0.5825 | 24219608 |
0.0 | 64.8649 | 31200 | 0.5768 | 24376856 |
0.0 | 65.2807 | 31400 | 0.5760 | 24533352 |
0.0023 | 65.6965 | 31600 | 0.5757 | 24688616 |
0.0026 | 66.1123 | 31800 | 0.5854 | 24844832 |
0.0 | 66.5281 | 32000 | 0.5968 | 25002240 |
0.003 | 66.9439 | 32200 | 0.5836 | 25158144 |
0.0 | 67.3597 | 32400 | 0.5944 | 25314384 |
0.0 | 67.7755 | 32600 | 0.5914 | 25470704 |
0.0 | 68.1913 | 32800 | 0.5901 | 25627200 |
0.0 | 68.6071 | 33000 | 0.5959 | 25783456 |
0.0 | 69.0229 | 33200 | 0.5941 | 25940304 |
0.0025 | 69.4387 | 33400 | 0.5907 | 26096432 |
0.0 | 69.8545 | 33600 | 0.5958 | 26253360 |
0.0027 | 70.2703 | 33800 | 0.5947 | 26408736 |
0.0 | 70.6861 | 34000 | 0.5995 | 26565056 |
0.0 | 71.1019 | 34200 | 0.5997 | 26721176 |
0.0 | 71.5177 | 34400 | 0.5993 | 26877368 |
0.0 | 71.9335 | 34600 | 0.5985 | 27033912 |
0.0 | 72.3493 | 34800 | 0.6059 | 27190376 |
0.0 | 72.7651 | 35000 | 0.5963 | 27347112 |
0.0024 | 73.1809 | 35200 | 0.5994 | 27503480 |
0.0 | 73.5967 | 35400 | 0.5972 | 27660280 |
0.0 | 74.0125 | 35600 | 0.6042 | 27815536 |
0.0028 | 74.4283 | 35800 | 0.6032 | 27971600 |
0.0 | 74.8441 | 36000 | 0.5979 | 28127664 |
0.0 | 75.2599 | 36200 | 0.5976 | 28284736 |
0.0 | 75.6757 | 36400 | 0.6029 | 28440672 |
0.0 | 76.0915 | 36600 | 0.6010 | 28596968 |
0.0025 | 76.5073 | 36800 | 0.6039 | 28753672 |
0.0027 | 76.9231 | 37000 | 0.6040 | 28909800 |
0.0 | 77.3389 | 37200 | 0.6021 | 29066104 |
0.0 | 77.7547 | 37400 | 0.6025 | 29222328 |
0.0027 | 78.1705 | 37600 | 0.6012 | 29378344 |
0.0 | 78.5863 | 37800 | 0.6025 | 29534888 |
0.0 | 79.0021 | 38000 | 0.5997 | 29690392 |
0.0 | 79.4179 | 38200 | 0.6019 | 29846936 |
0.0 | 79.8337 | 38400 | 0.5982 | 30002424 |
0.0 | 80.2495 | 38600 | 0.6050 | 30158536 |
0.0025 | 80.6653 | 38800 | 0.6021 | 30314984 |
0.0 | 81.0811 | 39000 | 0.6039 | 30471288 |
0.0 | 81.4969 | 39200 | 0.6009 | 30628024 |
0.0 | 81.9127 | 39400 | 0.6022 | 30784376 |
0.0027 | 82.3285 | 39600 | 0.6016 | 30940904 |
0.0 | 82.7443 | 39800 | 0.6060 | 31097352 |
0.0 | 83.1601 | 40000 | 0.6031 | 31253176 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support