metadata
library_name: peft
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- llama-factory
- prompt-tuning
- generated_from_trainer
model-index:
- name: train_mnli_1744902589
results: []
train_mnli_1744902589
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the mnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.0822
- Num Input Tokens Seen: 65325648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.3965 | 0.0091 | 200 | 0.4141 | 324448 |
0.3746 | 0.0181 | 400 | 0.3753 | 648960 |
0.3615 | 0.0272 | 600 | 0.3822 | 978272 |
0.3844 | 0.0362 | 800 | 0.3138 | 1304544 |
0.1833 | 0.0453 | 1000 | 0.1620 | 1632320 |
0.1372 | 0.0543 | 1200 | 0.1440 | 1960640 |
0.1135 | 0.0634 | 1400 | 0.1312 | 2285632 |
0.0898 | 0.0724 | 1600 | 0.1266 | 2618496 |
0.0891 | 0.0815 | 1800 | 0.1173 | 2944032 |
0.1235 | 0.0905 | 2000 | 0.1099 | 3272000 |
0.1175 | 0.0996 | 2200 | 0.1345 | 3597472 |
0.1044 | 0.1086 | 2400 | 0.1175 | 3927168 |
0.1046 | 0.1177 | 2600 | 0.1443 | 4255584 |
0.078 | 0.1268 | 2800 | 0.1138 | 4584288 |
0.124 | 0.1358 | 3000 | 0.1206 | 4909888 |
0.1259 | 0.1449 | 3200 | 0.1140 | 5238176 |
0.1213 | 0.1539 | 3400 | 0.1109 | 5565344 |
0.112 | 0.1630 | 3600 | 0.1050 | 5894816 |
0.1753 | 0.1720 | 3800 | 0.1097 | 6221824 |
0.0931 | 0.1811 | 4000 | 0.1074 | 6549344 |
0.06 | 0.1901 | 4200 | 0.1040 | 6877728 |
0.1073 | 0.1992 | 4400 | 0.0992 | 7208416 |
0.0841 | 0.2082 | 4600 | 0.1044 | 7534752 |
0.0774 | 0.2173 | 4800 | 0.1065 | 7860736 |
0.0842 | 0.2264 | 5000 | 0.1028 | 8188256 |
0.0763 | 0.2354 | 5200 | 0.1066 | 8511680 |
0.1273 | 0.2445 | 5400 | 0.1013 | 8837568 |
0.1139 | 0.2535 | 5600 | 0.0995 | 9160064 |
0.1226 | 0.2626 | 5800 | 0.1071 | 9487296 |
0.0678 | 0.2716 | 6000 | 0.0969 | 9811712 |
0.1137 | 0.2807 | 6200 | 0.0990 | 10136992 |
0.1202 | 0.2897 | 6400 | 0.1026 | 10462272 |
0.0555 | 0.2988 | 6600 | 0.0990 | 10789600 |
0.0718 | 0.3078 | 6800 | 0.0977 | 11113952 |
0.0758 | 0.3169 | 7000 | 0.1019 | 11441248 |
0.0763 | 0.3259 | 7200 | 0.1010 | 11771744 |
0.1444 | 0.3350 | 7400 | 0.0997 | 12094400 |
0.0627 | 0.3441 | 7600 | 0.0987 | 12416992 |
0.0583 | 0.3531 | 7800 | 0.0977 | 12743488 |
0.0857 | 0.3622 | 8000 | 0.1012 | 13067648 |
0.1244 | 0.3712 | 8200 | 0.0997 | 13394336 |
0.0996 | 0.3803 | 8400 | 0.1115 | 13721024 |
0.0838 | 0.3893 | 8600 | 0.0970 | 14051424 |
0.1093 | 0.3984 | 8800 | 0.0981 | 14376864 |
0.0549 | 0.4074 | 9000 | 0.0952 | 14703264 |
0.127 | 0.4165 | 9200 | 0.1009 | 15029760 |
0.126 | 0.4255 | 9400 | 0.1006 | 15361920 |
0.08 | 0.4346 | 9600 | 0.0958 | 15682912 |
0.0856 | 0.4436 | 9800 | 0.0948 | 16010208 |
0.0618 | 0.4527 | 10000 | 0.0968 | 16337472 |
0.095 | 0.4618 | 10200 | 0.0992 | 16665216 |
0.1181 | 0.4708 | 10400 | 0.0926 | 16998848 |
0.1616 | 0.4799 | 10600 | 0.0949 | 17323904 |
0.0901 | 0.4889 | 10800 | 0.1001 | 17650528 |
0.1134 | 0.4980 | 11000 | 0.1006 | 17980544 |
0.0907 | 0.5070 | 11200 | 0.0931 | 18309024 |
0.0866 | 0.5161 | 11400 | 0.0955 | 18634272 |
0.0861 | 0.5251 | 11600 | 0.0949 | 18963136 |
0.1076 | 0.5342 | 11800 | 0.1031 | 19290912 |
0.0806 | 0.5432 | 12000 | 0.0921 | 19612800 |
0.0779 | 0.5523 | 12200 | 0.0947 | 19941216 |
0.0874 | 0.5614 | 12400 | 0.0928 | 20264608 |
0.0729 | 0.5704 | 12600 | 0.0924 | 20589280 |
0.0567 | 0.5795 | 12800 | 0.0944 | 20916288 |
0.0638 | 0.5885 | 13000 | 0.0920 | 21243456 |
0.0783 | 0.5976 | 13200 | 0.0912 | 21567008 |
0.1021 | 0.6066 | 13400 | 0.0918 | 21891776 |
0.1274 | 0.6157 | 13600 | 0.0918 | 22216544 |
0.0805 | 0.6247 | 13800 | 0.0892 | 22549952 |
0.0811 | 0.6338 | 14000 | 0.0913 | 22873376 |
0.0758 | 0.6428 | 14200 | 0.0969 | 23198016 |
0.0889 | 0.6519 | 14400 | 0.0906 | 23524256 |
0.0804 | 0.6609 | 14600 | 0.0931 | 23851808 |
0.1041 | 0.6700 | 14800 | 0.0914 | 24178976 |
0.0883 | 0.6791 | 15000 | 0.0911 | 24506336 |
0.0461 | 0.6881 | 15200 | 0.0925 | 24829472 |
0.0486 | 0.6972 | 15400 | 0.0903 | 25157504 |
0.0882 | 0.7062 | 15600 | 0.0887 | 25483232 |
0.0291 | 0.7153 | 15800 | 0.0904 | 25808352 |
0.0824 | 0.7243 | 16000 | 0.0895 | 26140320 |
0.0822 | 0.7334 | 16200 | 0.0915 | 26468320 |
0.13 | 0.7424 | 16400 | 0.0913 | 26792800 |
0.1474 | 0.7515 | 16600 | 0.0902 | 27113248 |
0.1258 | 0.7605 | 16800 | 0.0889 | 27442048 |
0.0848 | 0.7696 | 17000 | 0.0897 | 27766816 |
0.0676 | 0.7787 | 17200 | 0.0884 | 28092576 |
0.0565 | 0.7877 | 17400 | 0.0886 | 28420128 |
0.0935 | 0.7968 | 17600 | 0.0884 | 28753152 |
0.0531 | 0.8058 | 17800 | 0.0905 | 29079392 |
0.1051 | 0.8149 | 18000 | 0.0919 | 29407776 |
0.0814 | 0.8239 | 18200 | 0.0882 | 29735104 |
0.0633 | 0.8330 | 18400 | 0.0877 | 30059584 |
0.0664 | 0.8420 | 18600 | 0.0902 | 30382752 |
0.0544 | 0.8511 | 18800 | 0.0908 | 30709120 |
0.0803 | 0.8601 | 19000 | 0.0869 | 31033824 |
0.0531 | 0.8692 | 19200 | 0.0887 | 31360256 |
0.0716 | 0.8782 | 19400 | 0.0875 | 31685120 |
0.1074 | 0.8873 | 19600 | 0.0881 | 32008192 |
0.0848 | 0.8964 | 19800 | 0.0881 | 32334784 |
0.0764 | 0.9054 | 20000 | 0.0874 | 32660640 |
0.0926 | 0.9145 | 20200 | 0.0883 | 32987392 |
0.0687 | 0.9235 | 20400 | 0.0870 | 33314592 |
0.0913 | 0.9326 | 20600 | 0.0878 | 33640256 |
0.0627 | 0.9416 | 20800 | 0.0875 | 33963328 |
0.0476 | 0.9507 | 21000 | 0.0863 | 34291328 |
0.0866 | 0.9597 | 21200 | 0.0859 | 34621536 |
0.0776 | 0.9688 | 21400 | 0.0891 | 34952416 |
0.073 | 0.9778 | 21600 | 0.0871 | 35281184 |
0.0911 | 0.9869 | 21800 | 0.0865 | 35609536 |
0.0604 | 0.9959 | 22000 | 0.0870 | 35932000 |
0.076 | 1.0050 | 22200 | 0.0859 | 36261328 |
0.0908 | 1.0140 | 22400 | 0.0871 | 36586768 |
0.0675 | 1.0231 | 22600 | 0.0860 | 36912400 |
0.1176 | 1.0321 | 22800 | 0.0856 | 37234576 |
0.0538 | 1.0412 | 23000 | 0.0872 | 37558256 |
0.0406 | 1.0503 | 23200 | 0.0853 | 37885552 |
0.0932 | 1.0593 | 23400 | 0.0876 | 38212304 |
0.1233 | 1.0684 | 23600 | 0.0862 | 38537360 |
0.0738 | 1.0774 | 23800 | 0.0871 | 38859952 |
0.0507 | 1.0865 | 24000 | 0.0891 | 39187024 |
0.1249 | 1.0955 | 24200 | 0.0896 | 39514800 |
0.1496 | 1.1046 | 24400 | 0.0851 | 39844432 |
0.0706 | 1.1136 | 24600 | 0.0872 | 40173104 |
0.0637 | 1.1227 | 24800 | 0.0879 | 40501584 |
0.0972 | 1.1317 | 25000 | 0.0863 | 40826064 |
0.1201 | 1.1408 | 25200 | 0.0848 | 41157808 |
0.0814 | 1.1498 | 25400 | 0.0860 | 41484464 |
0.1013 | 1.1589 | 25600 | 0.0844 | 41813008 |
0.0458 | 1.1680 | 25800 | 0.0843 | 42137552 |
0.0513 | 1.1770 | 26000 | 0.0860 | 42463856 |
0.0453 | 1.1861 | 26200 | 0.0859 | 42792816 |
0.1223 | 1.1951 | 26400 | 0.0843 | 43119408 |
0.0659 | 1.2042 | 26600 | 0.0843 | 43443728 |
0.0912 | 1.2132 | 26800 | 0.0847 | 43768400 |
0.0522 | 1.2223 | 27000 | 0.0851 | 44097456 |
0.0458 | 1.2313 | 27200 | 0.0846 | 44424592 |
0.0776 | 1.2404 | 27400 | 0.0844 | 44745968 |
0.0824 | 1.2494 | 27600 | 0.0853 | 45070992 |
0.0492 | 1.2585 | 27800 | 0.0856 | 45399120 |
0.0756 | 1.2675 | 28000 | 0.0853 | 45724560 |
0.0938 | 1.2766 | 28200 | 0.0846 | 46049424 |
0.1108 | 1.2857 | 28400 | 0.0839 | 46378736 |
0.0754 | 1.2947 | 28600 | 0.0855 | 46704368 |
0.1299 | 1.3038 | 28800 | 0.0842 | 47024752 |
0.048 | 1.3128 | 29000 | 0.0840 | 47354768 |
0.1063 | 1.3219 | 29200 | 0.0843 | 47683536 |
0.0768 | 1.3309 | 29400 | 0.0835 | 48009456 |
0.0975 | 1.3400 | 29600 | 0.0838 | 48335280 |
0.0736 | 1.3490 | 29800 | 0.0836 | 48661616 |
0.1061 | 1.3581 | 30000 | 0.0844 | 48990960 |
0.0557 | 1.3671 | 30200 | 0.0838 | 49316656 |
0.0732 | 1.3762 | 30400 | 0.0833 | 49642704 |
0.07 | 1.3853 | 30600 | 0.0833 | 49973200 |
0.0831 | 1.3943 | 30800 | 0.0841 | 50295952 |
0.0716 | 1.4034 | 31000 | 0.0830 | 50626416 |
0.0923 | 1.4124 | 31200 | 0.0831 | 50955696 |
0.0441 | 1.4215 | 31400 | 0.0830 | 51283248 |
0.0755 | 1.4305 | 31600 | 0.0835 | 51605616 |
0.0414 | 1.4396 | 31800 | 0.0839 | 51928880 |
0.0728 | 1.4486 | 32000 | 0.0829 | 52254448 |
0.0714 | 1.4577 | 32200 | 0.0840 | 52584816 |
0.0579 | 1.4667 | 32400 | 0.0831 | 52909264 |
0.0488 | 1.4758 | 32600 | 0.0832 | 53237136 |
0.1042 | 1.4848 | 32800 | 0.0829 | 53561232 |
0.0806 | 1.4939 | 33000 | 0.0830 | 53886096 |
0.0984 | 1.5030 | 33200 | 0.0828 | 54213552 |
0.0848 | 1.5120 | 33400 | 0.0829 | 54541744 |
0.0661 | 1.5211 | 33600 | 0.0832 | 54866672 |
0.114 | 1.5301 | 33800 | 0.0833 | 55196400 |
0.0608 | 1.5392 | 34000 | 0.0825 | 55522928 |
0.1102 | 1.5482 | 34200 | 0.0825 | 55851984 |
0.0499 | 1.5573 | 34400 | 0.0828 | 56180080 |
0.06 | 1.5663 | 34600 | 0.0826 | 56508016 |
0.0573 | 1.5754 | 34800 | 0.0827 | 56834992 |
0.0575 | 1.5844 | 35000 | 0.0823 | 57161136 |
0.0795 | 1.5935 | 35200 | 0.0823 | 57489264 |
0.0822 | 1.6025 | 35400 | 0.0823 | 57815440 |
0.124 | 1.6116 | 35600 | 0.0825 | 58142864 |
0.0604 | 1.6207 | 35800 | 0.0825 | 58469616 |
0.0851 | 1.6297 | 36000 | 0.0826 | 58792656 |
0.1173 | 1.6388 | 36200 | 0.0822 | 59123504 |
0.0741 | 1.6478 | 36400 | 0.0825 | 59449936 |
0.0703 | 1.6569 | 36600 | 0.0825 | 59776048 |
0.0573 | 1.6659 | 36800 | 0.0824 | 60104592 |
0.1298 | 1.6750 | 37000 | 0.0823 | 60434192 |
0.0495 | 1.6840 | 37200 | 0.0823 | 60762128 |
0.0297 | 1.6931 | 37400 | 0.0824 | 61094320 |
0.0893 | 1.7021 | 37600 | 0.0824 | 61421040 |
0.0497 | 1.7112 | 37800 | 0.0823 | 61747120 |
0.0917 | 1.7203 | 38000 | 0.0822 | 62073424 |
0.0714 | 1.7293 | 38200 | 0.0822 | 62401776 |
0.0704 | 1.7384 | 38400 | 0.0823 | 62726928 |
0.1191 | 1.7474 | 38600 | 0.0823 | 63048080 |
0.0823 | 1.7565 | 38800 | 0.0823 | 63369712 |
0.0535 | 1.7655 | 39000 | 0.0823 | 63696112 |
0.1242 | 1.7746 | 39200 | 0.0823 | 64022416 |
0.0864 | 1.7836 | 39400 | 0.0823 | 64348304 |
0.0483 | 1.7927 | 39600 | 0.0823 | 64675472 |
0.0352 | 1.8017 | 39800 | 0.0823 | 64999728 |
0.0702 | 1.8108 | 40000 | 0.0822 | 65325648 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1