train_mrpc_1744902651
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the mrpc dataset. It achieves the following results on the evaluation set:
- Loss: 0.1597
- Num Input Tokens Seen: 69324064
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.2129 | 0.9685 | 200 | 0.2560 | 346816 |
0.2093 | 1.9395 | 400 | 0.1950 | 694112 |
0.2057 | 2.9104 | 600 | 0.1901 | 1040448 |
0.1981 | 3.8814 | 800 | 0.1907 | 1386944 |
0.2159 | 4.8523 | 1000 | 0.2127 | 1733568 |
0.2096 | 5.8232 | 1200 | 0.1992 | 2080576 |
0.198 | 6.7942 | 1400 | 0.1953 | 2428000 |
0.1953 | 7.7651 | 1600 | 0.1985 | 2772832 |
0.1967 | 8.7361 | 1800 | 0.1901 | 3119936 |
0.2 | 9.7070 | 2000 | 0.1920 | 3464864 |
0.2084 | 10.6780 | 2200 | 0.1900 | 3812608 |
0.215 | 11.6489 | 2400 | 0.1903 | 4157312 |
0.1898 | 12.6199 | 2600 | 0.1912 | 4504256 |
0.1918 | 13.5908 | 2800 | 0.2050 | 4850880 |
0.1703 | 14.5617 | 3000 | 0.2072 | 5197664 |
0.191 | 15.5327 | 3200 | 0.1994 | 5543392 |
0.1721 | 16.5036 | 3400 | 0.2015 | 5889024 |
0.1644 | 17.4746 | 3600 | 0.2295 | 6234688 |
0.1857 | 18.4455 | 3800 | 0.1838 | 6580608 |
0.1392 | 19.4165 | 4000 | 0.1841 | 6926432 |
0.15 | 20.3874 | 4200 | 0.1688 | 7272896 |
0.1336 | 21.3584 | 4400 | 0.1597 | 7618208 |
0.1329 | 22.3293 | 4600 | 0.1677 | 7965376 |
0.1179 | 23.3002 | 4800 | 0.1794 | 8312352 |
0.1344 | 24.2712 | 5000 | 0.1844 | 8657568 |
0.1166 | 25.2421 | 5200 | 0.1897 | 9004576 |
0.0846 | 26.2131 | 5400 | 0.2017 | 9351552 |
0.0684 | 27.1840 | 5600 | 0.2355 | 9699840 |
0.0524 | 28.1550 | 5800 | 0.2284 | 10045120 |
0.0676 | 29.1259 | 6000 | 0.1920 | 10392096 |
0.0607 | 30.0969 | 6200 | 0.2144 | 10738624 |
0.0581 | 31.0678 | 6400 | 0.2491 | 11084512 |
0.0294 | 32.0387 | 6600 | 0.2425 | 11432096 |
0.0461 | 33.0097 | 6800 | 0.2511 | 11779520 |
0.0274 | 33.9782 | 7000 | 0.2553 | 12126016 |
0.0409 | 34.9492 | 7200 | 0.2505 | 12472160 |
0.0537 | 35.9201 | 7400 | 0.2833 | 12819680 |
0.0377 | 36.8910 | 7600 | 0.3290 | 13166368 |
0.019 | 37.8620 | 7800 | 0.3027 | 13513280 |
0.0382 | 38.8329 | 8000 | 0.2663 | 13860256 |
0.0161 | 39.8039 | 8200 | 0.2997 | 14205856 |
0.0249 | 40.7748 | 8400 | 0.4116 | 14553152 |
0.0105 | 41.7458 | 8600 | 0.3525 | 14898752 |
0.0078 | 42.7167 | 8800 | 0.3092 | 15245344 |
0.003 | 43.6877 | 9000 | 0.4724 | 15590560 |
0.0212 | 44.6586 | 9200 | 0.2946 | 15939776 |
0.0057 | 45.6295 | 9400 | 0.3509 | 16286016 |
0.0027 | 46.6005 | 9600 | 0.4230 | 16633088 |
0.027 | 47.5714 | 9800 | 0.2952 | 16978656 |
0.011 | 48.5424 | 10000 | 0.3346 | 17325024 |
0.0007 | 49.5133 | 10200 | 0.4630 | 17673440 |
0.0004 | 50.4843 | 10400 | 0.5090 | 18018272 |
0.0021 | 51.4552 | 10600 | 0.4792 | 18364992 |
0.0037 | 52.4262 | 10800 | 0.3702 | 18710720 |
0.0215 | 53.3971 | 11000 | 0.2850 | 19057408 |
0.0037 | 54.3680 | 11200 | 0.4289 | 19403360 |
0.0029 | 55.3390 | 11400 | 0.4302 | 19749408 |
0.0008 | 56.3099 | 11600 | 0.3519 | 20096416 |
0.0003 | 57.2809 | 11800 | 0.3904 | 20442944 |
0.0001 | 58.2518 | 12000 | 0.4402 | 20789120 |
0.0001 | 59.2228 | 12200 | 0.4630 | 21136768 |
0.0001 | 60.1937 | 12400 | 0.4810 | 21482944 |
0.0 | 61.1646 | 12600 | 0.4910 | 21830400 |
0.0 | 62.1356 | 12800 | 0.5048 | 22177696 |
0.0 | 63.1065 | 13000 | 0.5164 | 22523776 |
0.0 | 64.0775 | 13200 | 0.5217 | 22871744 |
0.0 | 65.0484 | 13400 | 0.5344 | 23218432 |
0.0 | 66.0194 | 13600 | 0.5355 | 23565280 |
0.0 | 66.9879 | 13800 | 0.5501 | 23911616 |
0.0 | 67.9588 | 14000 | 0.5571 | 24257984 |
0.0 | 68.9298 | 14200 | 0.5620 | 24604960 |
0.0 | 69.9007 | 14400 | 0.5700 | 24951648 |
0.0 | 70.8717 | 14600 | 0.5768 | 25297664 |
0.0 | 71.8426 | 14800 | 0.5825 | 25644032 |
0.0 | 72.8136 | 15000 | 0.5863 | 25989408 |
0.0 | 73.7845 | 15200 | 0.5961 | 26337760 |
0.0 | 74.7554 | 15400 | 0.6001 | 26684800 |
0.0 | 75.7264 | 15600 | 0.6087 | 27029856 |
0.0 | 76.6973 | 15800 | 0.6104 | 27376160 |
0.0 | 77.6683 | 16000 | 0.6174 | 27723904 |
0.0 | 78.6392 | 16200 | 0.6252 | 28071104 |
0.0 | 79.6102 | 16400 | 0.6269 | 28417344 |
0.0 | 80.5811 | 16600 | 0.6351 | 28766240 |
0.0 | 81.5521 | 16800 | 0.6470 | 29111104 |
0.0 | 82.5230 | 17000 | 0.6534 | 29456800 |
0.0 | 83.4939 | 17200 | 0.6542 | 29804640 |
0.0 | 84.4649 | 17400 | 0.6596 | 30151168 |
0.0 | 85.4358 | 17600 | 0.6673 | 30497536 |
0.0 | 86.4068 | 17800 | 0.6761 | 30845536 |
0.0 | 87.3777 | 18000 | 0.6790 | 31191456 |
0.0 | 88.3487 | 18200 | 0.6859 | 31539136 |
0.0 | 89.3196 | 18400 | 0.6945 | 31884000 |
0.0 | 90.2906 | 18600 | 0.7009 | 32231584 |
0.0 | 91.2615 | 18800 | 0.7076 | 32577088 |
0.0 | 92.2324 | 19000 | 0.7129 | 32924768 |
0.0 | 93.2034 | 19200 | 0.7167 | 33271392 |
0.0 | 94.1743 | 19400 | 0.7232 | 33619232 |
0.0 | 95.1453 | 19600 | 0.7298 | 33965280 |
0.0 | 96.1162 | 19800 | 0.7323 | 34311712 |
0.0 | 97.0872 | 20000 | 0.7365 | 34658112 |
0.0 | 98.0581 | 20200 | 0.7460 | 35004384 |
0.0 | 99.0291 | 20400 | 0.7533 | 35351392 |
0.0 | 99.9976 | 20600 | 0.7673 | 35698272 |
0.0 | 100.9685 | 20800 | 0.7691 | 36045088 |
0.0 | 101.9395 | 21000 | 0.7673 | 36391968 |
0.0 | 102.9104 | 21200 | 0.7807 | 36739040 |
0.0 | 103.8814 | 21400 | 0.7864 | 37084768 |
0.0 | 104.8523 | 21600 | 0.7933 | 37431808 |
0.0 | 105.8232 | 21800 | 0.7928 | 37779232 |
0.0 | 106.7942 | 22000 | 0.7955 | 38126112 |
0.0 | 107.7651 | 22200 | 0.8025 | 38472672 |
0.0 | 108.7361 | 22400 | 0.8094 | 38818464 |
0.0 | 109.7070 | 22600 | 0.8131 | 39165472 |
0.0 | 110.6780 | 22800 | 0.8207 | 39511328 |
0.0 | 111.6489 | 23000 | 0.8154 | 39858048 |
0.0 | 112.6199 | 23200 | 0.8248 | 40205184 |
0.0 | 113.5908 | 23400 | 0.8288 | 40552448 |
0.0 | 114.5617 | 23600 | 0.8311 | 40899872 |
0.0 | 115.5327 | 23800 | 0.8397 | 41246848 |
0.0 | 116.5036 | 24000 | 0.8407 | 41593088 |
0.0 | 117.4746 | 24200 | 0.8490 | 41938464 |
0.0 | 118.4455 | 24400 | 0.8508 | 42284064 |
0.0 | 119.4165 | 24600 | 0.8555 | 42631296 |
0.0 | 120.3874 | 24800 | 0.8583 | 42976992 |
0.0 | 121.3584 | 25000 | 0.8649 | 43321920 |
0.0 | 122.3293 | 25200 | 0.8704 | 43669344 |
0.0 | 123.3002 | 25400 | 0.8657 | 44016096 |
0.0 | 124.2712 | 25600 | 0.8713 | 44363232 |
0.0 | 125.2421 | 25800 | 0.8755 | 44706400 |
0.0 | 126.2131 | 26000 | 0.8748 | 45054080 |
0.0 | 127.1840 | 26200 | 0.8776 | 45400864 |
0.0 | 128.1550 | 26400 | 0.8825 | 45746688 |
0.0 | 129.1259 | 26600 | 0.8819 | 46093216 |
0.0 | 130.0969 | 26800 | 0.8913 | 46440960 |
0.0 | 131.0678 | 27000 | 0.8923 | 46785984 |
0.0 | 132.0387 | 27200 | 0.8876 | 47133856 |
0.0 | 133.0097 | 27400 | 0.8983 | 47481088 |
0.0 | 133.9782 | 27600 | 0.8977 | 47827904 |
0.0 | 134.9492 | 27800 | 0.9005 | 48175392 |
0.0 | 135.9201 | 28000 | 0.8896 | 48521536 |
0.0 | 136.8910 | 28200 | 0.9022 | 48867904 |
0.0 | 137.8620 | 28400 | 0.9042 | 49212704 |
0.0 | 138.8329 | 28600 | 0.9121 | 49561312 |
0.0 | 139.8039 | 28800 | 0.9098 | 49907264 |
0.0 | 140.7748 | 29000 | 0.9094 | 50254720 |
0.0 | 141.7458 | 29200 | 0.9094 | 50600480 |
0.0 | 142.7167 | 29400 | 0.9118 | 50947456 |
0.0 | 143.6877 | 29600 | 0.9100 | 51295040 |
0.0 | 144.6586 | 29800 | 0.9159 | 51641376 |
0.0 | 145.6295 | 30000 | 0.9118 | 51988288 |
0.0 | 146.6005 | 30200 | 0.9192 | 52334112 |
0.0 | 147.5714 | 30400 | 0.9197 | 52683008 |
0.0 | 148.5424 | 30600 | 0.9226 | 53028128 |
0.0 | 149.5133 | 30800 | 0.9173 | 53374400 |
0.0 | 150.4843 | 31000 | 0.9247 | 53720704 |
0.0 | 151.4552 | 31200 | 0.9205 | 54067392 |
0.0 | 152.4262 | 31400 | 0.9210 | 54414880 |
0.0 | 153.3971 | 31600 | 0.9176 | 54760672 |
0.0 | 154.3680 | 31800 | 0.9281 | 55106400 |
0.0 | 155.3390 | 32000 | 0.9198 | 55452512 |
0.0 | 156.3099 | 32200 | 0.9223 | 55798400 |
0.0 | 157.2809 | 32400 | 0.9278 | 56146592 |
0.0 | 158.2518 | 32600 | 0.9310 | 56493696 |
0.0 | 159.2228 | 32800 | 0.9294 | 56840064 |
0.0 | 160.1937 | 33000 | 0.9296 | 57186368 |
0.0 | 161.1646 | 33200 | 0.9284 | 57532416 |
0.0 | 162.1356 | 33400 | 0.9298 | 57880832 |
0.0 | 163.1065 | 33600 | 0.9338 | 58227680 |
0.0 | 164.0775 | 33800 | 0.9280 | 58574880 |
0.0 | 165.0484 | 34000 | 0.9291 | 58922528 |
0.0 | 166.0194 | 34200 | 0.9313 | 59269760 |
0.0 | 166.9879 | 34400 | 0.9314 | 59615872 |
0.0 | 167.9588 | 34600 | 0.9329 | 59962368 |
0.0 | 168.9298 | 34800 | 0.9302 | 60308640 |
0.0 | 169.9007 | 35000 | 0.9295 | 60655616 |
0.0 | 170.8717 | 35200 | 0.9329 | 61003136 |
0.0 | 171.8426 | 35400 | 0.9291 | 61350016 |
0.0 | 172.8136 | 35600 | 0.9312 | 61696224 |
0.0 | 173.7845 | 35800 | 0.9349 | 62044256 |
0.0 | 174.7554 | 36000 | 0.9345 | 62389792 |
0.0 | 175.7264 | 36200 | 0.9363 | 62738496 |
0.0 | 176.6973 | 36400 | 0.9296 | 63084544 |
0.0 | 177.6683 | 36600 | 0.9367 | 63431712 |
0.0 | 178.6392 | 36800 | 0.9293 | 63778656 |
0.0 | 179.6102 | 37000 | 0.9344 | 64124736 |
0.0 | 180.5811 | 37200 | 0.9393 | 64471808 |
0.0 | 181.5521 | 37400 | 0.9260 | 64820352 |
0.0 | 182.5230 | 37600 | 0.9328 | 65167904 |
0.0 | 183.4939 | 37800 | 0.9315 | 65513280 |
0.0 | 184.4649 | 38000 | 0.9286 | 65859136 |
0.0 | 185.4358 | 38200 | 0.9327 | 66205888 |
0.0 | 186.4068 | 38400 | 0.9287 | 66552576 |
0.0 | 187.3777 | 38600 | 0.9321 | 66899904 |
0.0 | 188.3487 | 38800 | 0.9281 | 67245856 |
0.0 | 189.3196 | 39000 | 0.9361 | 67591648 |
0.0 | 190.2906 | 39200 | 0.9313 | 67937440 |
0.0 | 191.2615 | 39400 | 0.9313 | 68285088 |
0.0 | 192.2324 | 39600 | 0.9308 | 68631104 |
0.0 | 193.2034 | 39800 | 0.9323 | 68978016 |
0.0 | 194.1743 | 40000 | 0.9357 | 69324064 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_mrpc_1744902651
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3