train_qnli_1744902608
This model is a fine-tuned version of google/gemma-3-1b-it on the qnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.0678
- Num Input Tokens Seen: 73102784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.2201 | 0.0339 | 200 | 0.2234 | 367200 |
0.0726 | 0.0679 | 400 | 0.1261 | 737312 |
0.1142 | 0.1018 | 600 | 0.1096 | 1102816 |
0.0995 | 0.1358 | 800 | 0.1027 | 1468736 |
0.1089 | 0.1697 | 1000 | 0.0995 | 1829952 |
0.0976 | 0.2037 | 1200 | 0.0960 | 2199200 |
0.1023 | 0.2376 | 1400 | 0.0943 | 2565536 |
0.0905 | 0.2716 | 1600 | 0.0933 | 2930336 |
0.0822 | 0.3055 | 1800 | 0.0916 | 3297216 |
0.0795 | 0.3395 | 2000 | 0.0911 | 3666880 |
0.0888 | 0.3734 | 2200 | 0.0895 | 4036544 |
0.0861 | 0.4073 | 2400 | 0.0884 | 4400256 |
0.0998 | 0.4413 | 2600 | 0.0874 | 4765408 |
0.0919 | 0.4752 | 2800 | 0.0871 | 5130336 |
0.068 | 0.5092 | 3000 | 0.0859 | 5495328 |
0.0903 | 0.5431 | 3200 | 0.0853 | 5857280 |
0.1068 | 0.5771 | 3400 | 0.0845 | 6221504 |
0.0682 | 0.6110 | 3600 | 0.0844 | 6589568 |
0.0788 | 0.6450 | 3800 | 0.0847 | 6959584 |
0.0784 | 0.6789 | 4000 | 0.0830 | 7323712 |
0.0992 | 0.7129 | 4200 | 0.0826 | 7690880 |
0.0885 | 0.7468 | 4400 | 0.0821 | 8053632 |
0.0773 | 0.7808 | 4600 | 0.0814 | 8417216 |
0.0824 | 0.8147 | 4800 | 0.0812 | 8782624 |
0.095 | 0.8486 | 5000 | 0.0808 | 9145728 |
0.0875 | 0.8826 | 5200 | 0.0804 | 9513920 |
0.0805 | 0.9165 | 5400 | 0.0801 | 9877152 |
0.0894 | 0.9505 | 5600 | 0.0810 | 10240128 |
0.0881 | 0.9844 | 5800 | 0.0795 | 10606272 |
0.0757 | 1.0183 | 6000 | 0.0790 | 10971744 |
0.0968 | 1.0523 | 6200 | 0.0786 | 11335648 |
0.0803 | 1.0862 | 6400 | 0.0784 | 11702592 |
0.0912 | 1.1202 | 6600 | 0.0783 | 12070112 |
0.0838 | 1.1541 | 6800 | 0.0779 | 12437088 |
0.0695 | 1.1881 | 7000 | 0.0777 | 12802848 |
0.0873 | 1.2220 | 7200 | 0.0773 | 13171040 |
0.071 | 1.2560 | 7400 | 0.0772 | 13539968 |
0.0822 | 1.2899 | 7600 | 0.0766 | 13904864 |
0.0855 | 1.3238 | 7800 | 0.0764 | 14272512 |
0.0872 | 1.3578 | 8000 | 0.0762 | 14634880 |
0.0569 | 1.3917 | 8200 | 0.0767 | 15002592 |
0.0648 | 1.4257 | 8400 | 0.0765 | 15369600 |
0.0498 | 1.4596 | 8600 | 0.0759 | 15731008 |
0.0706 | 1.4936 | 8800 | 0.0754 | 16092896 |
0.0891 | 1.5275 | 9000 | 0.0765 | 16458208 |
0.0686 | 1.5615 | 9200 | 0.0755 | 16823328 |
0.0934 | 1.5954 | 9400 | 0.0752 | 17185120 |
0.0732 | 1.6294 | 9600 | 0.0750 | 17551488 |
0.09 | 1.6633 | 9800 | 0.0746 | 17914752 |
0.0691 | 1.6972 | 10000 | 0.0746 | 18281888 |
0.0782 | 1.7312 | 10200 | 0.0756 | 18645120 |
0.0571 | 1.7651 | 10400 | 0.0743 | 19010848 |
0.0721 | 1.7991 | 10600 | 0.0740 | 19377344 |
0.0702 | 1.8330 | 10800 | 0.0739 | 19739232 |
0.0726 | 1.8670 | 11000 | 0.0738 | 20107584 |
0.0723 | 1.9009 | 11200 | 0.0739 | 20470912 |
0.0832 | 1.9349 | 11400 | 0.0740 | 20832736 |
0.0623 | 1.9688 | 11600 | 0.0735 | 21199808 |
0.0755 | 2.0027 | 11800 | 0.0752 | 21568384 |
0.0663 | 2.0367 | 12000 | 0.0734 | 21931424 |
0.0826 | 2.0706 | 12200 | 0.0731 | 22294816 |
0.0694 | 2.1046 | 12400 | 0.0729 | 22655968 |
0.0674 | 2.1385 | 12600 | 0.0728 | 23020896 |
0.0669 | 2.1724 | 12800 | 0.0726 | 23383104 |
0.0714 | 2.2064 | 13000 | 0.0724 | 23746656 |
0.0577 | 2.2403 | 13200 | 0.0724 | 24110208 |
0.0718 | 2.2743 | 13400 | 0.0722 | 24476544 |
0.0791 | 2.3082 | 13600 | 0.0721 | 24841440 |
0.07 | 2.3422 | 13800 | 0.0732 | 25206624 |
0.0682 | 2.3761 | 14000 | 0.0719 | 25573280 |
0.056 | 2.4101 | 14200 | 0.0719 | 25939392 |
0.0686 | 2.4440 | 14400 | 0.0723 | 26303968 |
0.0684 | 2.4780 | 14600 | 0.0718 | 26666944 |
0.0782 | 2.5119 | 14800 | 0.0716 | 27035136 |
0.0782 | 2.5458 | 15000 | 0.0718 | 27406144 |
0.0678 | 2.5798 | 15200 | 0.0715 | 27772832 |
0.07 | 2.6137 | 15400 | 0.0714 | 28134848 |
0.0579 | 2.6477 | 15600 | 0.0713 | 28505504 |
0.0633 | 2.6816 | 15800 | 0.0712 | 28870784 |
0.0754 | 2.7156 | 16000 | 0.0711 | 29233952 |
0.0688 | 2.7495 | 16200 | 0.0713 | 29603328 |
0.0687 | 2.7835 | 16400 | 0.0714 | 29968768 |
0.0752 | 2.8174 | 16600 | 0.0711 | 30334496 |
0.0626 | 2.8514 | 16800 | 0.0711 | 30703616 |
0.0792 | 2.8853 | 17000 | 0.0713 | 31068224 |
0.0692 | 2.9193 | 17200 | 0.0708 | 31438688 |
0.0602 | 2.9532 | 17400 | 0.0707 | 31802368 |
0.0766 | 2.9871 | 17600 | 0.0704 | 32165728 |
0.0649 | 3.0210 | 17800 | 0.0704 | 32528896 |
0.0758 | 3.0550 | 18000 | 0.0712 | 32897376 |
0.0858 | 3.0889 | 18200 | 0.0705 | 33262688 |
0.0653 | 3.1229 | 18400 | 0.0707 | 33623616 |
0.0722 | 3.1568 | 18600 | 0.0700 | 33989920 |
0.0766 | 3.1908 | 18800 | 0.0701 | 34354528 |
0.0698 | 3.2247 | 19000 | 0.0705 | 34724672 |
0.0852 | 3.2587 | 19200 | 0.0702 | 35092288 |
0.0705 | 3.2926 | 19400 | 0.0703 | 35458048 |
0.0623 | 3.3266 | 19600 | 0.0699 | 35826240 |
0.0656 | 3.3605 | 19800 | 0.0700 | 36191232 |
0.0816 | 3.3944 | 20000 | 0.0700 | 36553088 |
0.059 | 3.4284 | 20200 | 0.0698 | 36917376 |
0.0612 | 3.4623 | 20400 | 0.0698 | 37284512 |
0.0772 | 3.4963 | 20600 | 0.0697 | 37649248 |
0.0608 | 3.5302 | 20800 | 0.0696 | 38012256 |
0.0637 | 3.5642 | 21000 | 0.0696 | 38378592 |
0.0829 | 3.5981 | 21200 | 0.0694 | 38743328 |
0.0668 | 3.6321 | 21400 | 0.0698 | 39111200 |
0.0651 | 3.6660 | 21600 | 0.0693 | 39473536 |
0.0706 | 3.7000 | 21800 | 0.0693 | 39836704 |
0.068 | 3.7339 | 22000 | 0.0701 | 40202176 |
0.0806 | 3.7679 | 22200 | 0.0696 | 40568544 |
0.0671 | 3.8018 | 22400 | 0.0693 | 40932032 |
0.0842 | 3.8357 | 22600 | 0.0694 | 41296544 |
0.0599 | 3.8697 | 22800 | 0.0691 | 41661472 |
0.0818 | 3.9036 | 23000 | 0.0692 | 42031616 |
0.0663 | 3.9376 | 23200 | 0.0690 | 42395200 |
0.054 | 3.9715 | 23400 | 0.0691 | 42760960 |
0.0543 | 4.0054 | 23600 | 0.0690 | 43128480 |
0.0647 | 4.0394 | 23800 | 0.0693 | 43492288 |
0.0523 | 4.0733 | 24000 | 0.0689 | 43859360 |
0.0734 | 4.1073 | 24200 | 0.0688 | 44222400 |
0.0712 | 4.1412 | 24400 | 0.0691 | 44585632 |
0.0492 | 4.1752 | 24600 | 0.0690 | 44956064 |
0.0661 | 4.2091 | 24800 | 0.0688 | 45323456 |
0.0583 | 4.2431 | 25000 | 0.0688 | 45688544 |
0.0682 | 4.2770 | 25200 | 0.0686 | 46054272 |
0.0843 | 4.3109 | 25400 | 0.0687 | 46420608 |
0.0594 | 4.3449 | 25600 | 0.0689 | 46787232 |
0.0622 | 4.3788 | 25800 | 0.0688 | 47151008 |
0.0574 | 4.4128 | 26000 | 0.0690 | 47516064 |
0.0594 | 4.4467 | 26200 | 0.0687 | 47880960 |
0.0698 | 4.4807 | 26400 | 0.0686 | 48244480 |
0.0468 | 4.5146 | 26600 | 0.0688 | 48612352 |
0.0469 | 4.5486 | 26800 | 0.0688 | 48977376 |
0.0529 | 4.5825 | 27000 | 0.0685 | 49343328 |
0.0649 | 4.6165 | 27200 | 0.0685 | 49712064 |
0.0805 | 4.6504 | 27400 | 0.0685 | 50076832 |
0.0531 | 4.6843 | 27600 | 0.0683 | 50439616 |
0.0733 | 4.7183 | 27800 | 0.0686 | 50803552 |
0.0751 | 4.7522 | 28000 | 0.0685 | 51165472 |
0.0621 | 4.7862 | 28200 | 0.0684 | 51527808 |
0.0636 | 4.8201 | 28400 | 0.0683 | 51895200 |
0.064 | 4.8541 | 28600 | 0.0683 | 52259648 |
0.0755 | 4.8880 | 28800 | 0.0684 | 52628032 |
0.0781 | 4.9220 | 29000 | 0.0684 | 52997024 |
0.083 | 4.9559 | 29200 | 0.0684 | 53364352 |
0.0688 | 4.9899 | 29400 | 0.0684 | 53730624 |
0.0806 | 5.0238 | 29600 | 0.0683 | 54094208 |
0.0654 | 5.0577 | 29800 | 0.0682 | 54461312 |
0.066 | 5.0917 | 30000 | 0.0685 | 54825216 |
0.0505 | 5.1256 | 30200 | 0.0685 | 55189504 |
0.0719 | 5.1595 | 30400 | 0.0682 | 55553280 |
0.0674 | 5.1935 | 30600 | 0.0683 | 55917792 |
0.072 | 5.2274 | 30800 | 0.0683 | 56282176 |
0.0495 | 5.2614 | 31000 | 0.0684 | 56643104 |
0.0575 | 5.2953 | 31200 | 0.0690 | 57005120 |
0.0511 | 5.3293 | 31400 | 0.0683 | 57373152 |
0.0483 | 5.3632 | 31600 | 0.0684 | 57735872 |
0.0635 | 5.3972 | 31800 | 0.0682 | 58101536 |
0.0946 | 5.4311 | 32000 | 0.0683 | 58472288 |
0.0701 | 5.4651 | 32200 | 0.0681 | 58840960 |
0.0785 | 5.4990 | 32400 | 0.0685 | 59204992 |
0.0741 | 5.5329 | 32600 | 0.0681 | 59570752 |
0.0594 | 5.5669 | 32800 | 0.0680 | 59937728 |
0.0511 | 5.6008 | 33000 | 0.0683 | 60306240 |
0.0809 | 5.6348 | 33200 | 0.0681 | 60675168 |
0.0648 | 5.6687 | 33400 | 0.0682 | 61042176 |
0.0818 | 5.7027 | 33600 | 0.0681 | 61409120 |
0.0697 | 5.7366 | 33800 | 0.0678 | 61775168 |
0.0437 | 5.7706 | 34000 | 0.0682 | 62143616 |
0.0819 | 5.8045 | 34200 | 0.0681 | 62507552 |
0.0636 | 5.8385 | 34400 | 0.0680 | 62872928 |
0.0748 | 5.8724 | 34600 | 0.0680 | 63234816 |
0.0511 | 5.9064 | 34800 | 0.0680 | 63599616 |
0.08 | 5.9403 | 35000 | 0.0681 | 63966688 |
0.053 | 5.9742 | 35200 | 0.0680 | 64332704 |
0.0796 | 6.0081 | 35400 | 0.0680 | 64693664 |
0.0642 | 6.0421 | 35600 | 0.0682 | 65053728 |
0.0656 | 6.0760 | 35800 | 0.0681 | 65419648 |
0.0789 | 6.1100 | 36000 | 0.0679 | 65786464 |
0.0648 | 6.1439 | 36200 | 0.0681 | 66152416 |
0.0629 | 6.1779 | 36400 | 0.0681 | 66522528 |
0.0629 | 6.2118 | 36600 | 0.0681 | 66888512 |
0.0565 | 6.2458 | 36800 | 0.0681 | 67255840 |
0.0591 | 6.2797 | 37000 | 0.0681 | 67620416 |
0.0556 | 6.3137 | 37200 | 0.0681 | 67983360 |
0.0514 | 6.3476 | 37400 | 0.0682 | 68348480 |
0.07 | 6.3816 | 37600 | 0.0679 | 68715840 |
0.0543 | 6.4155 | 37800 | 0.0681 | 69081536 |
0.0887 | 6.4494 | 38000 | 0.0680 | 69446208 |
0.051 | 6.4834 | 38200 | 0.0680 | 69813728 |
0.0644 | 6.5173 | 38400 | 0.0680 | 70182464 |
0.0457 | 6.5513 | 38600 | 0.0682 | 70547904 |
0.0766 | 6.5852 | 38800 | 0.0680 | 70911456 |
0.0701 | 6.6192 | 39000 | 0.0681 | 71277536 |
0.0563 | 6.6531 | 39200 | 0.0680 | 71642624 |
0.0755 | 6.6871 | 39400 | 0.0680 | 72006592 |
0.0527 | 6.7210 | 39600 | 0.0681 | 72370176 |
0.062 | 6.7550 | 39800 | 0.0682 | 72737088 |
0.0616 | 6.7889 | 40000 | 0.0682 | 73102784 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support