train_qnli_1744902614
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the qnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.0316
- Num Input Tokens Seen: 74724160
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.1403 | 0.0339 | 200 | 0.1379 | 375872 |
0.1382 | 0.0679 | 400 | 0.1370 | 754656 |
0.1236 | 0.1018 | 600 | 0.1185 | 1127296 |
0.1512 | 0.1358 | 800 | 0.1434 | 1500832 |
0.1154 | 0.1697 | 1000 | 0.1269 | 1870752 |
0.1121 | 0.2037 | 1200 | 0.1039 | 2248448 |
0.1074 | 0.2376 | 1400 | 0.0942 | 2622784 |
0.0663 | 0.2716 | 1600 | 0.0766 | 2995616 |
0.0599 | 0.3055 | 1800 | 0.0593 | 3370144 |
0.0636 | 0.3395 | 2000 | 0.0803 | 3747936 |
0.0434 | 0.3734 | 2200 | 0.0447 | 4126560 |
0.0328 | 0.4073 | 2400 | 0.0444 | 4497920 |
0.0356 | 0.4413 | 2600 | 0.0593 | 4870432 |
0.056 | 0.4752 | 2800 | 0.0489 | 5242976 |
0.0374 | 0.5092 | 3000 | 0.0473 | 5615808 |
0.039 | 0.5431 | 3200 | 0.0407 | 5984672 |
0.0668 | 0.5771 | 3400 | 0.0394 | 6356832 |
0.0352 | 0.6110 | 3600 | 0.0430 | 6732928 |
0.0353 | 0.6450 | 3800 | 0.0391 | 7111456 |
0.0274 | 0.6789 | 4000 | 0.0406 | 7481824 |
0.0373 | 0.7129 | 4200 | 0.0376 | 7857440 |
0.0283 | 0.7468 | 4400 | 0.0400 | 8229632 |
0.0367 | 0.7808 | 4600 | 0.0387 | 8601824 |
0.0279 | 0.8147 | 4800 | 0.0371 | 8974688 |
0.0372 | 0.8486 | 5000 | 0.0377 | 9345088 |
0.0395 | 0.8826 | 5200 | 0.0378 | 9720928 |
0.0279 | 0.9165 | 5400 | 0.0391 | 10090976 |
0.0322 | 0.9505 | 5600 | 0.0356 | 10461824 |
0.056 | 0.9844 | 5800 | 0.0364 | 10837568 |
0.0379 | 1.0183 | 6000 | 0.0380 | 11211008 |
0.0378 | 1.0523 | 6200 | 0.0386 | 11582528 |
0.0369 | 1.0862 | 6400 | 0.0357 | 11958208 |
0.0585 | 1.1202 | 6600 | 0.0386 | 12334752 |
0.0421 | 1.1541 | 6800 | 0.0363 | 12710176 |
0.0202 | 1.1881 | 7000 | 0.0357 | 13083200 |
0.0364 | 1.2220 | 7200 | 0.0394 | 13458944 |
0.0389 | 1.2560 | 7400 | 0.0360 | 13836256 |
0.0582 | 1.2899 | 7600 | 0.0425 | 14209248 |
0.0686 | 1.3238 | 7800 | 0.0377 | 14585344 |
0.0314 | 1.3578 | 8000 | 0.0344 | 14955328 |
0.0167 | 1.3917 | 8200 | 0.0365 | 15331776 |
0.021 | 1.4257 | 8400 | 0.0431 | 15706624 |
0.0217 | 1.4596 | 8600 | 0.0335 | 16075392 |
0.0285 | 1.4936 | 8800 | 0.0388 | 16445568 |
0.0705 | 1.5275 | 9000 | 0.0363 | 16819648 |
0.0413 | 1.5615 | 9200 | 0.0374 | 17191872 |
0.0967 | 1.5954 | 9400 | 0.0344 | 17561280 |
0.0372 | 1.6294 | 9600 | 0.0344 | 17936128 |
0.0583 | 1.6633 | 9800 | 0.0345 | 18307616 |
0.0593 | 1.6972 | 10000 | 0.0531 | 18683168 |
0.0296 | 1.7312 | 10200 | 0.0378 | 19053408 |
0.0555 | 1.7651 | 10400 | 0.0358 | 19427296 |
0.0365 | 1.7991 | 10600 | 0.0348 | 19802400 |
0.0244 | 1.8330 | 10800 | 0.0360 | 20173056 |
0.0426 | 1.8670 | 11000 | 0.0337 | 20550720 |
0.0393 | 1.9009 | 11200 | 0.0336 | 20920224 |
0.04 | 1.9349 | 11400 | 0.0355 | 21289344 |
0.0205 | 1.9688 | 11600 | 0.0337 | 21666048 |
0.0417 | 2.0027 | 11800 | 0.0334 | 22041760 |
0.0263 | 2.0367 | 12000 | 0.0350 | 22412256 |
0.0388 | 2.0706 | 12200 | 0.0334 | 22782848 |
0.03 | 2.1046 | 12400 | 0.0345 | 23151392 |
0.0277 | 2.1385 | 12600 | 0.0355 | 23523648 |
0.0279 | 2.1724 | 12800 | 0.0370 | 23892992 |
0.0176 | 2.2064 | 13000 | 0.0340 | 24264192 |
0.0311 | 2.2403 | 13200 | 0.0337 | 24635264 |
0.0665 | 2.2743 | 13400 | 0.0340 | 25009664 |
0.0389 | 2.3082 | 13600 | 0.0339 | 25382432 |
0.0443 | 2.3422 | 13800 | 0.0356 | 25755616 |
0.0414 | 2.3761 | 14000 | 0.0348 | 26131424 |
0.0413 | 2.4101 | 14200 | 0.0357 | 26504960 |
0.0291 | 2.4440 | 14400 | 0.0342 | 26877888 |
0.0446 | 2.4780 | 14600 | 0.0343 | 27248384 |
0.0487 | 2.5119 | 14800 | 0.0328 | 27625376 |
0.0329 | 2.5458 | 15000 | 0.0357 | 28005696 |
0.0415 | 2.5798 | 15200 | 0.0333 | 28379936 |
0.0319 | 2.6137 | 15400 | 0.0333 | 28749536 |
0.0199 | 2.6477 | 15600 | 0.0332 | 29128672 |
0.024 | 2.6816 | 15800 | 0.0324 | 29503456 |
0.0393 | 2.7156 | 16000 | 0.0340 | 29874176 |
0.054 | 2.7495 | 16200 | 0.0340 | 30251904 |
0.0168 | 2.7835 | 16400 | 0.0330 | 30626560 |
0.0251 | 2.8174 | 16600 | 0.0378 | 30999968 |
0.0355 | 2.8514 | 16800 | 0.0342 | 31376704 |
0.0345 | 2.8853 | 17000 | 0.0322 | 31749472 |
0.039 | 2.9193 | 17200 | 0.0326 | 32128320 |
0.0255 | 2.9532 | 17400 | 0.0322 | 32501056 |
0.0341 | 2.9871 | 17600 | 0.0329 | 32872640 |
0.0246 | 3.0210 | 17800 | 0.0356 | 33243744 |
0.0205 | 3.0550 | 18000 | 0.0323 | 33619808 |
0.0476 | 3.0889 | 18200 | 0.0336 | 33994048 |
0.0108 | 3.1229 | 18400 | 0.0335 | 34361920 |
0.0366 | 3.1568 | 18600 | 0.0326 | 34735392 |
0.0173 | 3.1908 | 18800 | 0.0334 | 35107872 |
0.0292 | 3.2247 | 19000 | 0.0337 | 35486976 |
0.0389 | 3.2587 | 19200 | 0.0348 | 35862880 |
0.023 | 3.2926 | 19400 | 0.0327 | 36237280 |
0.0393 | 3.3266 | 19600 | 0.0338 | 36614176 |
0.0259 | 3.3605 | 19800 | 0.0332 | 36987200 |
0.021 | 3.3944 | 20000 | 0.0333 | 37357312 |
0.0167 | 3.4284 | 20200 | 0.0344 | 37728448 |
0.0357 | 3.4623 | 20400 | 0.0324 | 38104736 |
0.0305 | 3.4963 | 20600 | 0.0338 | 38477696 |
0.0262 | 3.5302 | 20800 | 0.0331 | 38847808 |
0.015 | 3.5642 | 21000 | 0.0329 | 39222464 |
0.0269 | 3.5981 | 21200 | 0.0351 | 39595392 |
0.0226 | 3.6321 | 21400 | 0.0323 | 39971968 |
0.0376 | 3.6660 | 21600 | 0.0323 | 40341952 |
0.0289 | 3.7000 | 21800 | 0.0329 | 40713376 |
0.0246 | 3.7339 | 22000 | 0.0335 | 41085856 |
0.0225 | 3.7679 | 22200 | 0.0320 | 41461568 |
0.0214 | 3.8018 | 22400 | 0.0319 | 41833280 |
0.0295 | 3.8357 | 22600 | 0.0317 | 42205152 |
0.0266 | 3.8697 | 22800 | 0.0319 | 42578144 |
0.0238 | 3.9036 | 23000 | 0.0317 | 42956608 |
0.0186 | 3.9376 | 23200 | 0.0316 | 43327904 |
0.0178 | 3.9715 | 23400 | 0.0323 | 43700960 |
0.0152 | 4.0054 | 23600 | 0.0318 | 44077568 |
0.0102 | 4.0394 | 23800 | 0.0318 | 44449632 |
0.0318 | 4.0733 | 24000 | 0.0331 | 44825184 |
0.0223 | 4.1073 | 24200 | 0.0351 | 45195872 |
0.0171 | 4.1412 | 24400 | 0.0353 | 45566816 |
0.0199 | 4.1752 | 24600 | 0.0350 | 45945824 |
0.0164 | 4.2091 | 24800 | 0.0363 | 46322304 |
0.0106 | 4.2431 | 25000 | 0.0341 | 46694976 |
0.0236 | 4.2770 | 25200 | 0.0338 | 47069472 |
0.0321 | 4.3109 | 25400 | 0.0353 | 47444064 |
0.0127 | 4.3449 | 25600 | 0.0332 | 47819744 |
0.043 | 4.3788 | 25800 | 0.0342 | 48190912 |
0.0119 | 4.4128 | 26000 | 0.0352 | 48563040 |
0.0415 | 4.4467 | 26200 | 0.0347 | 48936320 |
0.0175 | 4.4807 | 26400 | 0.0343 | 49306944 |
0.0268 | 4.5146 | 26600 | 0.0334 | 49683712 |
0.0069 | 4.5486 | 26800 | 0.0340 | 50057824 |
0.0141 | 4.5825 | 27000 | 0.0334 | 50431552 |
0.0099 | 4.6165 | 27200 | 0.0332 | 50808576 |
0.0232 | 4.6504 | 27400 | 0.0336 | 51182144 |
0.0133 | 4.6843 | 27600 | 0.0350 | 51554016 |
0.0285 | 4.7183 | 27800 | 0.0336 | 51925888 |
0.0206 | 4.7522 | 28000 | 0.0340 | 52295168 |
0.0159 | 4.7862 | 28200 | 0.0339 | 52664096 |
0.0134 | 4.8201 | 28400 | 0.0340 | 53038784 |
0.0297 | 4.8541 | 28600 | 0.0334 | 53412352 |
0.0241 | 4.8880 | 28800 | 0.0332 | 53788608 |
0.0168 | 4.9220 | 29000 | 0.0336 | 54166176 |
0.029 | 4.9559 | 29200 | 0.0341 | 54541216 |
0.0257 | 4.9899 | 29400 | 0.0330 | 54916928 |
0.0135 | 5.0238 | 29600 | 0.0346 | 55288160 |
0.0023 | 5.0577 | 29800 | 0.0358 | 55662784 |
0.0044 | 5.0917 | 30000 | 0.0362 | 56034432 |
0.0101 | 5.1256 | 30200 | 0.0361 | 56405792 |
0.0486 | 5.1595 | 30400 | 0.0376 | 56777504 |
0.0207 | 5.1935 | 30600 | 0.0368 | 57149760 |
0.0126 | 5.2274 | 30800 | 0.0365 | 57521536 |
0.0039 | 5.2614 | 31000 | 0.0370 | 57889408 |
0.0134 | 5.2953 | 31200 | 0.0370 | 58258624 |
0.0134 | 5.3293 | 31400 | 0.0368 | 58635520 |
0.0303 | 5.3632 | 31600 | 0.0380 | 59006592 |
0.0086 | 5.3972 | 31800 | 0.0383 | 59381312 |
0.0214 | 5.4311 | 32000 | 0.0363 | 59761568 |
0.0218 | 5.4651 | 32200 | 0.0365 | 60138720 |
0.0248 | 5.4990 | 32400 | 0.0358 | 60511168 |
0.0291 | 5.5329 | 32600 | 0.0359 | 60884448 |
0.0246 | 5.5669 | 32800 | 0.0371 | 61259680 |
0.014 | 5.6008 | 33000 | 0.0365 | 61636416 |
0.0335 | 5.6348 | 33200 | 0.0375 | 62013760 |
0.0276 | 5.6687 | 33400 | 0.0377 | 62389440 |
0.0313 | 5.7027 | 33600 | 0.0367 | 62764512 |
0.0146 | 5.7366 | 33800 | 0.0373 | 63139872 |
0.0055 | 5.7706 | 34000 | 0.0374 | 63517632 |
0.0281 | 5.8045 | 34200 | 0.0373 | 63889248 |
0.0073 | 5.8385 | 34400 | 0.0372 | 64262048 |
0.0153 | 5.8724 | 34600 | 0.0372 | 64632256 |
0.0094 | 5.9064 | 34800 | 0.0374 | 65006944 |
0.0494 | 5.9403 | 35000 | 0.0374 | 65382656 |
0.0178 | 5.9742 | 35200 | 0.0380 | 65756992 |
0.008 | 6.0081 | 35400 | 0.0387 | 66125280 |
0.0164 | 6.0421 | 35600 | 0.0390 | 66493536 |
0.015 | 6.0760 | 35800 | 0.0392 | 66867936 |
0.0131 | 6.1100 | 36000 | 0.0397 | 67243328 |
0.0232 | 6.1439 | 36200 | 0.0398 | 67616992 |
0.0015 | 6.1779 | 36400 | 0.0406 | 67995520 |
0.0233 | 6.2118 | 36600 | 0.0406 | 68370624 |
0.0046 | 6.2458 | 36800 | 0.0404 | 68746880 |
0.0144 | 6.2797 | 37000 | 0.0404 | 69119328 |
0.0356 | 6.3137 | 37200 | 0.0405 | 69490336 |
0.0216 | 6.3476 | 37400 | 0.0401 | 69862688 |
0.0035 | 6.3816 | 37600 | 0.0401 | 70238592 |
0.0208 | 6.4155 | 37800 | 0.0399 | 70612608 |
0.0144 | 6.4494 | 38000 | 0.0401 | 70985568 |
0.0045 | 6.4834 | 38200 | 0.0400 | 71360704 |
0.0039 | 6.5173 | 38400 | 0.0401 | 71738432 |
0.0028 | 6.5513 | 38600 | 0.0401 | 72112640 |
0.0152 | 6.5852 | 38800 | 0.0401 | 72484256 |
0.0065 | 6.6192 | 39000 | 0.0401 | 72858912 |
0.0217 | 6.6531 | 39200 | 0.0401 | 73232576 |
0.0166 | 6.6871 | 39400 | 0.0402 | 73604352 |
0.0083 | 6.7210 | 39600 | 0.0401 | 73975648 |
0.0159 | 6.7550 | 39800 | 0.0402 | 74349632 |
0.009 | 6.7889 | 40000 | 0.0402 | 74724160 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_qnli_1744902614
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3