train_rte_1744902658
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:
- Loss: 0.0769
- Num Input Tokens Seen: 98761256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.092 | 1.4207 | 200 | 0.1188 | 496688 |
0.0953 | 2.8414 | 400 | 0.1078 | 991488 |
0.0855 | 4.2567 | 600 | 0.1014 | 1481464 |
0.1016 | 5.6774 | 800 | 0.0951 | 1979088 |
0.0674 | 7.0927 | 1000 | 0.0916 | 2468504 |
0.0675 | 8.5134 | 1200 | 0.0880 | 2963120 |
0.0855 | 9.9340 | 1400 | 0.0856 | 3459048 |
0.0859 | 11.3494 | 1600 | 0.0827 | 3951104 |
0.0635 | 12.7701 | 1800 | 0.0819 | 4445432 |
0.0663 | 14.1854 | 2000 | 0.0801 | 4938824 |
0.0538 | 15.6061 | 2200 | 0.0799 | 5433720 |
0.0367 | 17.0214 | 2400 | 0.0782 | 5925896 |
0.0789 | 18.4421 | 2600 | 0.0781 | 6422360 |
0.0351 | 19.8627 | 2800 | 0.0769 | 6914152 |
0.0685 | 21.2781 | 3000 | 0.0776 | 7403976 |
0.0507 | 22.6988 | 3200 | 0.0777 | 7902520 |
0.0508 | 24.1141 | 3400 | 0.0784 | 8394080 |
0.0394 | 25.5348 | 3600 | 0.0784 | 8884224 |
0.0448 | 26.9554 | 3800 | 0.0804 | 9382368 |
0.0344 | 28.3708 | 4000 | 0.0781 | 9872768 |
0.0462 | 29.7914 | 4200 | 0.0827 | 10366000 |
0.0458 | 31.2068 | 4400 | 0.0818 | 10867488 |
0.0274 | 32.6275 | 4600 | 0.0828 | 11358568 |
0.0295 | 34.0428 | 4800 | 0.0867 | 11852320 |
0.0279 | 35.4635 | 5000 | 0.0853 | 12343880 |
0.0396 | 36.8841 | 5200 | 0.0864 | 12837040 |
0.0394 | 38.2995 | 5400 | 0.0882 | 13329368 |
0.0303 | 39.7201 | 5600 | 0.0914 | 13828784 |
0.0265 | 41.1355 | 5800 | 0.0913 | 14315304 |
0.0345 | 42.5561 | 6000 | 0.0965 | 14806592 |
0.022 | 43.9768 | 6200 | 0.0976 | 15305208 |
0.0608 | 45.3922 | 6400 | 0.0974 | 15791608 |
0.0329 | 46.8128 | 6600 | 0.0993 | 16292464 |
0.0078 | 48.2282 | 6800 | 0.0991 | 16781768 |
0.0096 | 49.6488 | 7000 | 0.1037 | 17278560 |
0.0179 | 51.0642 | 7200 | 0.1071 | 17769384 |
0.024 | 52.4848 | 7400 | 0.1106 | 18262680 |
0.025 | 53.9055 | 7600 | 0.1095 | 18763936 |
0.0057 | 55.3209 | 7800 | 0.1153 | 19258096 |
0.0096 | 56.7415 | 8000 | 0.1177 | 19753648 |
0.0165 | 58.1569 | 8200 | 0.1222 | 20244128 |
0.0033 | 59.5775 | 8400 | 0.1243 | 20739208 |
0.0165 | 60.9982 | 8600 | 0.1350 | 21236872 |
0.0311 | 62.4135 | 8800 | 0.1331 | 21726944 |
0.0183 | 63.8342 | 9000 | 0.1417 | 22223288 |
0.0047 | 65.2496 | 9200 | 0.1453 | 22716672 |
0.0114 | 66.6702 | 9400 | 0.1469 | 23209088 |
0.0033 | 68.0856 | 9600 | 0.1570 | 23701520 |
0.0019 | 69.5062 | 9800 | 0.1625 | 24197944 |
0.0007 | 70.9269 | 10000 | 0.1689 | 24694272 |
0.0085 | 72.3422 | 10200 | 0.1779 | 25191256 |
0.0024 | 73.7629 | 10400 | 0.1801 | 25688288 |
0.0032 | 75.1783 | 10600 | 0.1853 | 26177720 |
0.0094 | 76.5989 | 10800 | 0.1942 | 26675248 |
0.0036 | 78.0143 | 11000 | 0.1949 | 27168496 |
0.0012 | 79.4349 | 11200 | 0.2083 | 27664360 |
0.0006 | 80.8556 | 11400 | 0.2168 | 28161984 |
0.0003 | 82.2709 | 11600 | 0.2216 | 28655448 |
0.0001 | 83.6916 | 11800 | 0.2328 | 29151808 |
0.0003 | 85.1070 | 12000 | 0.2439 | 29642952 |
0.0012 | 86.5276 | 12200 | 0.2450 | 30140536 |
0.0002 | 87.9483 | 12400 | 0.2557 | 30639808 |
0.0001 | 89.3636 | 12600 | 0.2625 | 31135048 |
0.0001 | 90.7843 | 12800 | 0.2692 | 31630256 |
0.0 | 92.1996 | 13000 | 0.2778 | 32121256 |
0.0001 | 93.6203 | 13200 | 0.2851 | 32618184 |
0.0 | 95.0357 | 13400 | 0.2871 | 33115432 |
0.0 | 96.4563 | 13600 | 0.2967 | 33609472 |
0.0 | 97.8770 | 13800 | 0.2957 | 34098712 |
0.0 | 99.2923 | 14000 | 0.3018 | 34590368 |
0.0 | 100.7130 | 14200 | 0.3042 | 35081248 |
0.0 | 102.1283 | 14400 | 0.3081 | 35571464 |
0.0 | 103.5490 | 14600 | 0.3173 | 36063824 |
0.0 | 104.9697 | 14800 | 0.3213 | 36557944 |
0.0 | 106.3850 | 15000 | 0.3214 | 37048560 |
0.0 | 107.8057 | 15200 | 0.3286 | 37543928 |
0.0 | 109.2210 | 15400 | 0.3324 | 38035968 |
0.0 | 110.6417 | 15600 | 0.3341 | 38526000 |
0.0 | 112.0570 | 15800 | 0.3375 | 39021440 |
0.0 | 113.4777 | 16000 | 0.3440 | 39519712 |
0.0 | 114.8984 | 16200 | 0.3470 | 40014440 |
0.0 | 116.3137 | 16400 | 0.3465 | 40509368 |
0.0 | 117.7344 | 16600 | 0.3544 | 41001000 |
0.0 | 119.1497 | 16800 | 0.3556 | 41492672 |
0.0 | 120.5704 | 17000 | 0.3608 | 41991984 |
0.0 | 121.9911 | 17200 | 0.3677 | 42486736 |
0.0 | 123.4064 | 17400 | 0.3618 | 42979888 |
0.0 | 124.8271 | 17600 | 0.3672 | 43473920 |
0.0 | 126.2424 | 17800 | 0.3735 | 43963728 |
0.0 | 127.6631 | 18000 | 0.3795 | 44457208 |
0.0 | 129.0784 | 18200 | 0.3762 | 44952664 |
0.0 | 130.4991 | 18400 | 0.3836 | 45446704 |
0.0 | 131.9198 | 18600 | 0.3844 | 45936552 |
0.0 | 133.3351 | 18800 | 0.3866 | 46426240 |
0.0 | 134.7558 | 19000 | 0.3884 | 46921256 |
0.0 | 136.1711 | 19200 | 0.3936 | 47412080 |
0.0 | 137.5918 | 19400 | 0.4000 | 47911024 |
0.0 | 139.0071 | 19600 | 0.4013 | 48404752 |
0.0 | 140.4278 | 19800 | 0.3979 | 48901416 |
0.0 | 141.8485 | 20000 | 0.4048 | 49400736 |
0.0 | 143.2638 | 20200 | 0.4050 | 49895752 |
0.0 | 144.6845 | 20400 | 0.4090 | 50380736 |
0.0 | 146.0998 | 20600 | 0.4114 | 50871288 |
0.0 | 147.5205 | 20800 | 0.4133 | 51360328 |
0.0 | 148.9412 | 21000 | 0.4221 | 51853696 |
0.0 | 150.3565 | 21200 | 0.4133 | 52348712 |
0.0 | 151.7772 | 21400 | 0.4201 | 52842992 |
0.0 | 153.1925 | 21600 | 0.4187 | 53335368 |
0.0 | 154.6132 | 21800 | 0.4241 | 53831240 |
0.0 | 156.0285 | 22000 | 0.4271 | 54320840 |
0.0 | 157.4492 | 22200 | 0.4315 | 54818304 |
0.0 | 158.8699 | 22400 | 0.4378 | 55310560 |
0.0 | 160.2852 | 22600 | 0.4331 | 55805192 |
0.0 | 161.7059 | 22800 | 0.4387 | 56294240 |
0.0 | 163.1212 | 23000 | 0.4402 | 56785216 |
0.0 | 164.5419 | 23200 | 0.4422 | 57277112 |
0.0 | 165.9626 | 23400 | 0.4469 | 57768960 |
0.0 | 167.3779 | 23600 | 0.4443 | 58259216 |
0.0 | 168.7986 | 23800 | 0.4450 | 58754552 |
0.0 | 170.2139 | 24000 | 0.4488 | 59250304 |
0.0 | 171.6346 | 24200 | 0.4542 | 59743752 |
0.0 | 173.0499 | 24400 | 0.4631 | 60240920 |
0.0 | 174.4706 | 24600 | 0.4591 | 60738488 |
0.0 | 175.8913 | 24800 | 0.4609 | 61232632 |
0.0 | 177.3066 | 25000 | 0.4604 | 61726896 |
0.0 | 178.7273 | 25200 | 0.4639 | 62220440 |
0.0 | 180.1426 | 25400 | 0.4690 | 62713544 |
0.0 | 181.5633 | 25600 | 0.4743 | 63208560 |
0.0 | 182.9840 | 25800 | 0.4737 | 63703320 |
0.0 | 184.3993 | 26000 | 0.4700 | 64195280 |
0.0 | 185.8200 | 26200 | 0.4720 | 64693448 |
0.0 | 187.2353 | 26400 | 0.4812 | 65180864 |
0.0 | 188.6560 | 26600 | 0.4797 | 65680024 |
0.0 | 190.0713 | 26800 | 0.4736 | 66173368 |
0.0 | 191.4920 | 27000 | 0.4879 | 66664968 |
0.0 | 192.9127 | 27200 | 0.4814 | 67157528 |
0.0 | 194.3280 | 27400 | 0.4878 | 67657848 |
0.0 | 195.7487 | 27600 | 0.4905 | 68154280 |
0.0 | 197.1640 | 27800 | 0.4967 | 68648760 |
0.0 | 198.5847 | 28000 | 0.4929 | 69145424 |
0.0 | 200.0 | 28200 | 0.4865 | 69634592 |
0.0 | 201.4207 | 28400 | 0.5011 | 70126824 |
0.0 | 202.8414 | 28600 | 0.4969 | 70621048 |
0.0 | 204.2567 | 28800 | 0.5014 | 71112744 |
0.0 | 205.6774 | 29000 | 0.5011 | 71609328 |
0.0 | 207.0927 | 29200 | 0.5018 | 72096488 |
0.0 | 208.5134 | 29400 | 0.5106 | 72590600 |
0.0 | 209.9340 | 29600 | 0.5025 | 73085400 |
0.0 | 211.3494 | 29800 | 0.5078 | 73578704 |
0.0 | 212.7701 | 30000 | 0.5055 | 74071832 |
0.0 | 214.1854 | 30200 | 0.5065 | 74558088 |
0.0 | 215.6061 | 30400 | 0.5114 | 75054720 |
0.0 | 217.0214 | 30600 | 0.5145 | 75550968 |
0.0 | 218.4421 | 30800 | 0.5194 | 76052048 |
0.0 | 219.8627 | 31000 | 0.5042 | 76544760 |
0.0 | 221.2781 | 31200 | 0.5109 | 77039312 |
0.0 | 222.6988 | 31400 | 0.5114 | 77536608 |
0.0 | 224.1141 | 31600 | 0.5141 | 78029096 |
0.0 | 225.5348 | 31800 | 0.5181 | 78521640 |
0.0 | 226.9554 | 32000 | 0.5107 | 79014704 |
0.0 | 228.3708 | 32200 | 0.5216 | 79509056 |
0.0 | 229.7914 | 32400 | 0.5178 | 80004760 |
0.0 | 231.2068 | 32600 | 0.5175 | 80498576 |
0.0 | 232.6275 | 32800 | 0.5124 | 80992160 |
0.0 | 234.0428 | 33000 | 0.5140 | 81484216 |
0.0 | 235.4635 | 33200 | 0.5206 | 81981536 |
0.0 | 236.8841 | 33400 | 0.5279 | 82469112 |
0.0 | 238.2995 | 33600 | 0.5172 | 82967264 |
0.0 | 239.7201 | 33800 | 0.5282 | 83460632 |
0.0 | 241.1355 | 34000 | 0.5240 | 83946936 |
0.0 | 242.5561 | 34200 | 0.5260 | 84438976 |
0.0 | 243.9768 | 34400 | 0.5288 | 84936992 |
0.0 | 245.3922 | 34600 | 0.5308 | 85424648 |
0.0 | 246.8128 | 34800 | 0.5231 | 85921552 |
0.0 | 248.2282 | 35000 | 0.5305 | 86414392 |
0.0 | 249.6488 | 35200 | 0.5272 | 86904424 |
0.0 | 251.0642 | 35400 | 0.5262 | 87399560 |
0.0 | 252.4848 | 35600 | 0.5229 | 87900568 |
0.0 | 253.9055 | 35800 | 0.5293 | 88391952 |
0.0 | 255.3209 | 36000 | 0.5363 | 88887288 |
0.0 | 256.7415 | 36200 | 0.5269 | 89375944 |
0.0 | 258.1569 | 36400 | 0.5282 | 89868176 |
0.0 | 259.5775 | 36600 | 0.5216 | 90365056 |
0.0 | 260.9982 | 36800 | 0.5223 | 90855096 |
0.0 | 262.4135 | 37000 | 0.5215 | 91348504 |
0.0 | 263.8342 | 37200 | 0.5219 | 91843280 |
0.0 | 265.2496 | 37400 | 0.5263 | 92339160 |
0.0 | 266.6702 | 37600 | 0.5266 | 92834936 |
0.0 | 268.0856 | 37800 | 0.5363 | 93329096 |
0.0 | 269.5062 | 38000 | 0.5160 | 93825960 |
0.0 | 270.9269 | 38200 | 0.5332 | 94316976 |
0.0 | 272.3422 | 38400 | 0.5265 | 94808456 |
0.0 | 273.7629 | 38600 | 0.5259 | 95304384 |
0.0 | 275.1783 | 38800 | 0.5236 | 95796256 |
0.0 | 276.5989 | 39000 | 0.5329 | 96293992 |
0.0 | 278.0143 | 39200 | 0.5310 | 96783960 |
0.0 | 279.4349 | 39400 | 0.5310 | 97275176 |
0.0 | 280.8556 | 39600 | 0.5310 | 97769584 |
0.0 | 282.2709 | 39800 | 0.5310 | 98266712 |
0.0 | 283.6916 | 40000 | 0.5310 | 98761256 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_rte_1744902658
Base model
meta-llama/Meta-Llama-3-8B-Instruct