train_rte_1744902658

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0769
  • Num Input Tokens Seen: 98761256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.092 1.4207 200 0.1188 496688
0.0953 2.8414 400 0.1078 991488
0.0855 4.2567 600 0.1014 1481464
0.1016 5.6774 800 0.0951 1979088
0.0674 7.0927 1000 0.0916 2468504
0.0675 8.5134 1200 0.0880 2963120
0.0855 9.9340 1400 0.0856 3459048
0.0859 11.3494 1600 0.0827 3951104
0.0635 12.7701 1800 0.0819 4445432
0.0663 14.1854 2000 0.0801 4938824
0.0538 15.6061 2200 0.0799 5433720
0.0367 17.0214 2400 0.0782 5925896
0.0789 18.4421 2600 0.0781 6422360
0.0351 19.8627 2800 0.0769 6914152
0.0685 21.2781 3000 0.0776 7403976
0.0507 22.6988 3200 0.0777 7902520
0.0508 24.1141 3400 0.0784 8394080
0.0394 25.5348 3600 0.0784 8884224
0.0448 26.9554 3800 0.0804 9382368
0.0344 28.3708 4000 0.0781 9872768
0.0462 29.7914 4200 0.0827 10366000
0.0458 31.2068 4400 0.0818 10867488
0.0274 32.6275 4600 0.0828 11358568
0.0295 34.0428 4800 0.0867 11852320
0.0279 35.4635 5000 0.0853 12343880
0.0396 36.8841 5200 0.0864 12837040
0.0394 38.2995 5400 0.0882 13329368
0.0303 39.7201 5600 0.0914 13828784
0.0265 41.1355 5800 0.0913 14315304
0.0345 42.5561 6000 0.0965 14806592
0.022 43.9768 6200 0.0976 15305208
0.0608 45.3922 6400 0.0974 15791608
0.0329 46.8128 6600 0.0993 16292464
0.0078 48.2282 6800 0.0991 16781768
0.0096 49.6488 7000 0.1037 17278560
0.0179 51.0642 7200 0.1071 17769384
0.024 52.4848 7400 0.1106 18262680
0.025 53.9055 7600 0.1095 18763936
0.0057 55.3209 7800 0.1153 19258096
0.0096 56.7415 8000 0.1177 19753648
0.0165 58.1569 8200 0.1222 20244128
0.0033 59.5775 8400 0.1243 20739208
0.0165 60.9982 8600 0.1350 21236872
0.0311 62.4135 8800 0.1331 21726944
0.0183 63.8342 9000 0.1417 22223288
0.0047 65.2496 9200 0.1453 22716672
0.0114 66.6702 9400 0.1469 23209088
0.0033 68.0856 9600 0.1570 23701520
0.0019 69.5062 9800 0.1625 24197944
0.0007 70.9269 10000 0.1689 24694272
0.0085 72.3422 10200 0.1779 25191256
0.0024 73.7629 10400 0.1801 25688288
0.0032 75.1783 10600 0.1853 26177720
0.0094 76.5989 10800 0.1942 26675248
0.0036 78.0143 11000 0.1949 27168496
0.0012 79.4349 11200 0.2083 27664360
0.0006 80.8556 11400 0.2168 28161984
0.0003 82.2709 11600 0.2216 28655448
0.0001 83.6916 11800 0.2328 29151808
0.0003 85.1070 12000 0.2439 29642952
0.0012 86.5276 12200 0.2450 30140536
0.0002 87.9483 12400 0.2557 30639808
0.0001 89.3636 12600 0.2625 31135048
0.0001 90.7843 12800 0.2692 31630256
0.0 92.1996 13000 0.2778 32121256
0.0001 93.6203 13200 0.2851 32618184
0.0 95.0357 13400 0.2871 33115432
0.0 96.4563 13600 0.2967 33609472
0.0 97.8770 13800 0.2957 34098712
0.0 99.2923 14000 0.3018 34590368
0.0 100.7130 14200 0.3042 35081248
0.0 102.1283 14400 0.3081 35571464
0.0 103.5490 14600 0.3173 36063824
0.0 104.9697 14800 0.3213 36557944
0.0 106.3850 15000 0.3214 37048560
0.0 107.8057 15200 0.3286 37543928
0.0 109.2210 15400 0.3324 38035968
0.0 110.6417 15600 0.3341 38526000
0.0 112.0570 15800 0.3375 39021440
0.0 113.4777 16000 0.3440 39519712
0.0 114.8984 16200 0.3470 40014440
0.0 116.3137 16400 0.3465 40509368
0.0 117.7344 16600 0.3544 41001000
0.0 119.1497 16800 0.3556 41492672
0.0 120.5704 17000 0.3608 41991984
0.0 121.9911 17200 0.3677 42486736
0.0 123.4064 17400 0.3618 42979888
0.0 124.8271 17600 0.3672 43473920
0.0 126.2424 17800 0.3735 43963728
0.0 127.6631 18000 0.3795 44457208
0.0 129.0784 18200 0.3762 44952664
0.0 130.4991 18400 0.3836 45446704
0.0 131.9198 18600 0.3844 45936552
0.0 133.3351 18800 0.3866 46426240
0.0 134.7558 19000 0.3884 46921256
0.0 136.1711 19200 0.3936 47412080
0.0 137.5918 19400 0.4000 47911024
0.0 139.0071 19600 0.4013 48404752
0.0 140.4278 19800 0.3979 48901416
0.0 141.8485 20000 0.4048 49400736
0.0 143.2638 20200 0.4050 49895752
0.0 144.6845 20400 0.4090 50380736
0.0 146.0998 20600 0.4114 50871288
0.0 147.5205 20800 0.4133 51360328
0.0 148.9412 21000 0.4221 51853696
0.0 150.3565 21200 0.4133 52348712
0.0 151.7772 21400 0.4201 52842992
0.0 153.1925 21600 0.4187 53335368
0.0 154.6132 21800 0.4241 53831240
0.0 156.0285 22000 0.4271 54320840
0.0 157.4492 22200 0.4315 54818304
0.0 158.8699 22400 0.4378 55310560
0.0 160.2852 22600 0.4331 55805192
0.0 161.7059 22800 0.4387 56294240
0.0 163.1212 23000 0.4402 56785216
0.0 164.5419 23200 0.4422 57277112
0.0 165.9626 23400 0.4469 57768960
0.0 167.3779 23600 0.4443 58259216
0.0 168.7986 23800 0.4450 58754552
0.0 170.2139 24000 0.4488 59250304
0.0 171.6346 24200 0.4542 59743752
0.0 173.0499 24400 0.4631 60240920
0.0 174.4706 24600 0.4591 60738488
0.0 175.8913 24800 0.4609 61232632
0.0 177.3066 25000 0.4604 61726896
0.0 178.7273 25200 0.4639 62220440
0.0 180.1426 25400 0.4690 62713544
0.0 181.5633 25600 0.4743 63208560
0.0 182.9840 25800 0.4737 63703320
0.0 184.3993 26000 0.4700 64195280
0.0 185.8200 26200 0.4720 64693448
0.0 187.2353 26400 0.4812 65180864
0.0 188.6560 26600 0.4797 65680024
0.0 190.0713 26800 0.4736 66173368
0.0 191.4920 27000 0.4879 66664968
0.0 192.9127 27200 0.4814 67157528
0.0 194.3280 27400 0.4878 67657848
0.0 195.7487 27600 0.4905 68154280
0.0 197.1640 27800 0.4967 68648760
0.0 198.5847 28000 0.4929 69145424
0.0 200.0 28200 0.4865 69634592
0.0 201.4207 28400 0.5011 70126824
0.0 202.8414 28600 0.4969 70621048
0.0 204.2567 28800 0.5014 71112744
0.0 205.6774 29000 0.5011 71609328
0.0 207.0927 29200 0.5018 72096488
0.0 208.5134 29400 0.5106 72590600
0.0 209.9340 29600 0.5025 73085400
0.0 211.3494 29800 0.5078 73578704
0.0 212.7701 30000 0.5055 74071832
0.0 214.1854 30200 0.5065 74558088
0.0 215.6061 30400 0.5114 75054720
0.0 217.0214 30600 0.5145 75550968
0.0 218.4421 30800 0.5194 76052048
0.0 219.8627 31000 0.5042 76544760
0.0 221.2781 31200 0.5109 77039312
0.0 222.6988 31400 0.5114 77536608
0.0 224.1141 31600 0.5141 78029096
0.0 225.5348 31800 0.5181 78521640
0.0 226.9554 32000 0.5107 79014704
0.0 228.3708 32200 0.5216 79509056
0.0 229.7914 32400 0.5178 80004760
0.0 231.2068 32600 0.5175 80498576
0.0 232.6275 32800 0.5124 80992160
0.0 234.0428 33000 0.5140 81484216
0.0 235.4635 33200 0.5206 81981536
0.0 236.8841 33400 0.5279 82469112
0.0 238.2995 33600 0.5172 82967264
0.0 239.7201 33800 0.5282 83460632
0.0 241.1355 34000 0.5240 83946936
0.0 242.5561 34200 0.5260 84438976
0.0 243.9768 34400 0.5288 84936992
0.0 245.3922 34600 0.5308 85424648
0.0 246.8128 34800 0.5231 85921552
0.0 248.2282 35000 0.5305 86414392
0.0 249.6488 35200 0.5272 86904424
0.0 251.0642 35400 0.5262 87399560
0.0 252.4848 35600 0.5229 87900568
0.0 253.9055 35800 0.5293 88391952
0.0 255.3209 36000 0.5363 88887288
0.0 256.7415 36200 0.5269 89375944
0.0 258.1569 36400 0.5282 89868176
0.0 259.5775 36600 0.5216 90365056
0.0 260.9982 36800 0.5223 90855096
0.0 262.4135 37000 0.5215 91348504
0.0 263.8342 37200 0.5219 91843280
0.0 265.2496 37400 0.5263 92339160
0.0 266.6702 37600 0.5266 92834936
0.0 268.0856 37800 0.5363 93329096
0.0 269.5062 38000 0.5160 93825960
0.0 270.9269 38200 0.5332 94316976
0.0 272.3422 38400 0.5265 94808456
0.0 273.7629 38600 0.5259 95304384
0.0 275.1783 38800 0.5236 95796256
0.0 276.5989 39000 0.5329 96293992
0.0 278.0143 39200 0.5310 96783960
0.0 279.4349 39400 0.5310 97275176
0.0 280.8556 39600 0.5310 97769584
0.0 282.2709 39800 0.5310 98266712
0.0 283.6916 40000 0.5310 98761256

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_rte_1744902658

Adapter
(850)
this model