train_stsb_1745333588
This model is a fine-tuned version of google/gemma-3-1b-it on the stsb dataset. It achieves the following results on the evaluation set:
- Loss: 0.2676
- Num Input Tokens Seen: 61089232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.3275 | 0.6182 | 200 | 0.4026 | 305312 |
0.221 | 1.2349 | 400 | 0.3055 | 610048 |
0.2426 | 1.8532 | 600 | 0.2938 | 917664 |
0.2098 | 2.4699 | 800 | 0.2834 | 1223104 |
0.2086 | 3.0866 | 1000 | 0.2775 | 1528432 |
0.3556 | 3.7048 | 1200 | 0.2740 | 1837520 |
0.2249 | 4.3215 | 1400 | 0.2798 | 2143216 |
0.2019 | 4.9397 | 1600 | 0.2718 | 2448176 |
0.1746 | 5.5564 | 1800 | 0.2676 | 2752768 |
0.2006 | 6.1731 | 2000 | 0.2784 | 3059504 |
0.1994 | 6.7913 | 2200 | 0.2786 | 3364688 |
0.2069 | 7.4080 | 2400 | 0.2786 | 3672432 |
0.1646 | 8.0247 | 2600 | 0.2956 | 3978272 |
0.1708 | 8.6430 | 2800 | 0.2893 | 4285856 |
0.1487 | 9.2597 | 3000 | 0.3124 | 4588608 |
0.1676 | 9.8779 | 3200 | 0.3109 | 4894432 |
0.1486 | 10.4946 | 3400 | 0.3226 | 5200528 |
0.1304 | 11.1113 | 3600 | 0.3695 | 5504960 |
0.1203 | 11.7295 | 3800 | 0.3689 | 5808800 |
0.1129 | 12.3462 | 4000 | 0.3892 | 6114608 |
0.1536 | 12.9645 | 4200 | 0.4068 | 6419376 |
0.1164 | 13.5811 | 4400 | 0.3944 | 6725664 |
0.0889 | 14.1978 | 4600 | 0.4298 | 7030208 |
0.1248 | 14.8161 | 4800 | 0.4356 | 7335712 |
0.0907 | 15.4328 | 5000 | 0.4585 | 7641232 |
0.0892 | 16.0495 | 5200 | 0.5003 | 7945360 |
0.0685 | 16.6677 | 5400 | 0.5207 | 8252048 |
0.0894 | 17.2844 | 5600 | 0.5641 | 8557024 |
0.0896 | 17.9026 | 5800 | 0.5424 | 8862080 |
0.0709 | 18.5193 | 6000 | 0.5848 | 9167248 |
0.0591 | 19.1360 | 6200 | 0.5905 | 9472816 |
0.0805 | 19.7543 | 6400 | 0.5791 | 9779344 |
0.0392 | 20.3709 | 6600 | 0.6397 | 10085888 |
0.0585 | 20.9892 | 6800 | 0.6511 | 10391904 |
0.0437 | 21.6059 | 7000 | 0.6394 | 10697664 |
0.056 | 22.2226 | 7200 | 0.6989 | 11000832 |
0.0462 | 22.8408 | 7400 | 0.6881 | 11308384 |
0.0347 | 23.4575 | 7600 | 0.7002 | 11614048 |
0.0281 | 24.0742 | 7800 | 0.7577 | 11917328 |
0.0427 | 24.6924 | 8000 | 0.7156 | 12224848 |
0.0331 | 25.3091 | 8200 | 0.7304 | 12530128 |
0.0283 | 25.9274 | 8400 | 0.7480 | 12838032 |
0.0382 | 26.5440 | 8600 | 0.7612 | 13142096 |
0.0248 | 27.1607 | 8800 | 0.7911 | 13447712 |
0.0368 | 27.7790 | 9000 | 0.7727 | 13751968 |
0.0228 | 28.3957 | 9200 | 0.8362 | 14060176 |
0.0215 | 29.0124 | 9400 | 0.8463 | 14362928 |
0.0207 | 29.6306 | 9600 | 0.8463 | 14669168 |
0.0132 | 30.2473 | 9800 | 0.8564 | 14973568 |
0.0241 | 30.8655 | 10000 | 0.8121 | 15279840 |
0.0179 | 31.4822 | 10200 | 0.8873 | 15586352 |
0.0163 | 32.0989 | 10400 | 0.8885 | 15891232 |
0.0097 | 32.7172 | 10600 | 0.9024 | 16197472 |
0.0258 | 33.3338 | 10800 | 0.9062 | 16500992 |
0.0122 | 33.9521 | 11000 | 0.9393 | 16807808 |
0.0129 | 34.5688 | 11200 | 0.9574 | 17112928 |
0.0141 | 35.1855 | 11400 | 0.9508 | 17420016 |
0.011 | 35.8037 | 11600 | 0.9517 | 17726608 |
0.0148 | 36.4204 | 11800 | 0.9903 | 18030288 |
0.0134 | 37.0371 | 12000 | 0.9711 | 18337584 |
0.0064 | 37.6553 | 12200 | 0.9344 | 18640720 |
0.003 | 38.2720 | 12400 | 0.9471 | 18946400 |
0.0037 | 38.8903 | 12600 | 1.0090 | 19254240 |
0.0073 | 39.5070 | 12800 | 1.0206 | 19558592 |
0.0023 | 40.1236 | 13000 | 1.0002 | 19861168 |
0.004 | 40.7419 | 13200 | 1.0219 | 20169712 |
0.0063 | 41.3586 | 13400 | 1.0153 | 20475008 |
0.0032 | 41.9768 | 13600 | 1.0315 | 20782016 |
0.0188 | 42.5935 | 13800 | 1.0707 | 21085440 |
0.0031 | 43.2102 | 14000 | 1.0690 | 21391616 |
0.0116 | 43.8284 | 14200 | 1.0848 | 21696768 |
0.0024 | 44.4451 | 14400 | 1.0729 | 22001488 |
0.0045 | 45.0618 | 14600 | 1.0530 | 22307216 |
0.0061 | 45.6801 | 14800 | 1.0578 | 22612016 |
0.0034 | 46.2968 | 15000 | 1.0937 | 22917744 |
0.0044 | 46.9150 | 15200 | 1.1081 | 23224720 |
0.0048 | 47.5317 | 15400 | 1.0822 | 23531040 |
0.0059 | 48.1484 | 15600 | 1.0939 | 23836048 |
0.0009 | 48.7666 | 15800 | 1.0975 | 24140240 |
0.0028 | 49.3833 | 16000 | 1.1265 | 24445104 |
0.0034 | 50.0 | 16200 | 1.0952 | 24750256 |
0.0009 | 50.6182 | 16400 | 1.1263 | 25055056 |
0.0004 | 51.2349 | 16600 | 1.0917 | 25360976 |
0.0044 | 51.8532 | 16800 | 1.1134 | 25669136 |
0.0019 | 52.4699 | 17000 | 1.0966 | 25972400 |
0.0008 | 53.0866 | 17200 | 1.1220 | 26280272 |
0.0015 | 53.7048 | 17400 | 1.1494 | 26583184 |
0.001 | 54.3215 | 17600 | 1.1380 | 26891152 |
0.0004 | 54.9397 | 17800 | 1.1527 | 27197008 |
0.0007 | 55.5564 | 18000 | 1.1521 | 27500160 |
0.0007 | 56.1731 | 18200 | 1.1340 | 27805616 |
0.0006 | 56.7913 | 18400 | 1.1533 | 28112336 |
0.0027 | 57.4080 | 18600 | 1.1523 | 28419888 |
0.0063 | 58.0247 | 18800 | 1.1742 | 28724096 |
0.0003 | 58.6430 | 19000 | 1.1629 | 29031328 |
0.0002 | 59.2597 | 19200 | 1.1756 | 29336560 |
0.0009 | 59.8779 | 19400 | 1.1314 | 29642224 |
0.0018 | 60.4946 | 19600 | 1.1558 | 29947456 |
0.0005 | 61.1113 | 19800 | 1.1776 | 30252288 |
0.0064 | 61.7295 | 20000 | 1.1481 | 30557408 |
0.0001 | 62.3462 | 20200 | 1.1813 | 30862656 |
0.0013 | 62.9645 | 20400 | 1.1702 | 31169472 |
0.0001 | 63.5811 | 20600 | 1.1900 | 31474928 |
0.0002 | 64.1978 | 20800 | 1.2230 | 31778496 |
0.0013 | 64.8161 | 21000 | 1.1976 | 32086304 |
0.0009 | 65.4328 | 21200 | 1.2225 | 32389328 |
0.0009 | 66.0495 | 21400 | 1.1915 | 32696656 |
0.0008 | 66.6677 | 21600 | 1.2035 | 33001008 |
0.0004 | 67.2844 | 21800 | 1.1833 | 33306288 |
0.0001 | 67.9026 | 22000 | 1.1998 | 33612592 |
0.0026 | 68.5193 | 22200 | 1.2146 | 33914992 |
0.002 | 69.1360 | 22400 | 1.2088 | 34219808 |
0.0001 | 69.7543 | 22600 | 1.2275 | 34525536 |
0.0002 | 70.3709 | 22800 | 1.2042 | 34829856 |
0.0004 | 70.9892 | 23000 | 1.2163 | 35134560 |
0.0 | 71.6059 | 23200 | 1.2090 | 35439168 |
0.0008 | 72.2226 | 23400 | 1.2194 | 35744608 |
0.0012 | 72.8408 | 23600 | 1.1988 | 36050688 |
0.0 | 73.4575 | 23800 | 1.2098 | 36353808 |
0.0 | 74.0742 | 24000 | 1.2206 | 36660560 |
0.0018 | 74.6924 | 24200 | 1.2063 | 36968464 |
0.0002 | 75.3091 | 24400 | 1.2526 | 37273264 |
0.0001 | 75.9274 | 24600 | 1.2034 | 37578896 |
0.0012 | 76.5440 | 24800 | 1.1966 | 37882832 |
0.0001 | 77.1607 | 25000 | 1.2145 | 38187312 |
0.0029 | 77.7790 | 25200 | 1.2366 | 38492720 |
0.0 | 78.3957 | 25400 | 1.2173 | 38796864 |
0.0003 | 79.0124 | 25600 | 1.2300 | 39103824 |
0.0 | 79.6306 | 25800 | 1.2622 | 39410448 |
0.0 | 80.2473 | 26000 | 1.2182 | 39715280 |
0.0001 | 80.8655 | 26200 | 1.2078 | 40021520 |
0.0 | 81.4822 | 26400 | 1.2485 | 40325376 |
0.0002 | 82.0989 | 26600 | 1.2378 | 40631296 |
0.0014 | 82.7172 | 26800 | 1.2316 | 40937312 |
0.0 | 83.3338 | 27000 | 1.2401 | 41240464 |
0.0001 | 83.9521 | 27200 | 1.2655 | 41550128 |
0.0006 | 84.5688 | 27400 | 1.2645 | 41855152 |
0.0 | 85.1855 | 27600 | 1.2606 | 42158912 |
0.0001 | 85.8037 | 27800 | 1.2502 | 42461856 |
0.0 | 86.4204 | 28000 | 1.2512 | 42769760 |
0.0001 | 87.0371 | 28200 | 1.2645 | 43074800 |
0.0 | 87.6553 | 28400 | 1.2440 | 43378640 |
0.0 | 88.2720 | 28600 | 1.2596 | 43683840 |
0.0 | 88.8903 | 28800 | 1.2711 | 43988256 |
0.0012 | 89.5070 | 29000 | 1.2651 | 44294256 |
0.0002 | 90.1236 | 29200 | 1.2797 | 44598464 |
0.0018 | 90.7419 | 29400 | 1.2737 | 44904928 |
0.0 | 91.3586 | 29600 | 1.2572 | 45208784 |
0.0 | 91.9768 | 29800 | 1.2705 | 45516336 |
0.0 | 92.5935 | 30000 | 1.2617 | 45820432 |
0.0 | 93.2102 | 30200 | 1.2716 | 46127408 |
0.0 | 93.8284 | 30400 | 1.2695 | 46431888 |
0.0 | 94.4451 | 30600 | 1.2839 | 46736368 |
0.0 | 95.0618 | 30800 | 1.2772 | 47043472 |
0.0 | 95.6801 | 31000 | 1.2825 | 47348976 |
0.0 | 96.2968 | 31200 | 1.2849 | 47652864 |
0.0 | 96.9150 | 31400 | 1.2851 | 47959872 |
0.0 | 97.5317 | 31600 | 1.2911 | 48265392 |
0.0 | 98.1484 | 31800 | 1.3045 | 48569984 |
0.0 | 98.7666 | 32000 | 1.3080 | 48874016 |
0.0015 | 99.3833 | 32200 | 1.2938 | 49181056 |
0.0 | 100.0 | 32400 | 1.2963 | 49485120 |
0.0 | 100.6182 | 32600 | 1.3041 | 49790304 |
0.0 | 101.2349 | 32800 | 1.3001 | 50097008 |
0.0 | 101.8532 | 33000 | 1.2975 | 50403088 |
0.001 | 102.4699 | 33200 | 1.2996 | 50707088 |
0.0 | 103.0866 | 33400 | 1.3146 | 51010144 |
0.0 | 103.7048 | 33600 | 1.3123 | 51318976 |
0.0006 | 104.3215 | 33800 | 1.3119 | 51623136 |
0.0 | 104.9397 | 34000 | 1.3114 | 51930240 |
0.0 | 105.5564 | 34200 | 1.3167 | 52233888 |
0.0006 | 106.1731 | 34400 | 1.3102 | 52541008 |
0.0 | 106.7913 | 34600 | 1.3217 | 52845904 |
0.0 | 107.4080 | 34800 | 1.3157 | 53150720 |
0.0 | 108.0247 | 35000 | 1.3300 | 53456816 |
0.0 | 108.6430 | 35200 | 1.3226 | 53760816 |
0.0 | 109.2597 | 35400 | 1.3300 | 54066160 |
0.0 | 109.8779 | 35600 | 1.3214 | 54371888 |
0.0 | 110.4946 | 35800 | 1.3269 | 54676672 |
0.0 | 111.1113 | 36000 | 1.3257 | 54983008 |
0.0 | 111.7295 | 36200 | 1.3201 | 55289472 |
0.0 | 112.3462 | 36400 | 1.3271 | 55591632 |
0.0 | 112.9645 | 36600 | 1.3276 | 55898640 |
0.0 | 113.5811 | 36800 | 1.3308 | 56202288 |
0.0005 | 114.1978 | 37000 | 1.3314 | 56510384 |
0.0 | 114.8161 | 37200 | 1.3328 | 56816880 |
0.0001 | 115.4328 | 37400 | 1.3345 | 57119232 |
0.0 | 116.0495 | 37600 | 1.3253 | 57424224 |
0.0 | 116.6677 | 37800 | 1.3277 | 57729856 |
0.0 | 117.2844 | 38000 | 1.3280 | 58034352 |
0.0 | 117.9026 | 38200 | 1.3345 | 58342576 |
0.0 | 118.5193 | 38400 | 1.3325 | 58648384 |
0.0 | 119.1360 | 38600 | 1.3329 | 58953568 |
0.0 | 119.7543 | 38800 | 1.3302 | 59257088 |
0.0 | 120.3709 | 39000 | 1.3315 | 59562208 |
0.0 | 120.9892 | 39200 | 1.3316 | 59867712 |
0.0 | 121.6059 | 39400 | 1.3352 | 60173616 |
0.0 | 122.2226 | 39600 | 1.3316 | 60476592 |
0.0 | 122.8408 | 39800 | 1.3298 | 60782960 |
0.0 | 123.4575 | 40000 | 1.3301 | 61089232 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support