train_stsb_1745333591
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the stsb dataset. It achieves the following results on the evaluation set:
- Loss: 0.5494
- Num Input Tokens Seen: 54490336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.8213 | 0.6182 | 200 | 0.9578 | 272576 |
0.5891 | 1.2349 | 400 | 0.7184 | 544096 |
0.6185 | 1.8532 | 600 | 0.6815 | 818048 |
0.5622 | 2.4699 | 800 | 0.6753 | 1089600 |
0.5506 | 3.0866 | 1000 | 0.6588 | 1361504 |
0.7865 | 3.7048 | 1200 | 0.6508 | 1636960 |
0.5862 | 4.3215 | 1400 | 0.6580 | 1909696 |
0.5254 | 4.9397 | 1600 | 0.6381 | 2182656 |
0.5086 | 5.5564 | 1800 | 0.6330 | 2453904 |
0.5407 | 6.1731 | 2000 | 0.6232 | 2727984 |
0.5487 | 6.7913 | 2200 | 0.6168 | 2999760 |
0.5661 | 7.4080 | 2400 | 0.5622 | 3274528 |
0.4508 | 8.0247 | 2600 | 0.5814 | 3546880 |
0.5109 | 8.6430 | 2800 | 0.5915 | 3821184 |
0.428 | 9.2597 | 3000 | 0.5584 | 4090704 |
0.4683 | 9.8779 | 3200 | 0.5621 | 4363696 |
0.4473 | 10.4946 | 3400 | 0.5494 | 4636656 |
0.4395 | 11.1113 | 3600 | 0.5833 | 4908928 |
0.4209 | 11.7295 | 3800 | 0.5668 | 5179040 |
0.4095 | 12.3462 | 4000 | 0.5749 | 5452192 |
0.444 | 12.9645 | 4200 | 0.5647 | 5724448 |
0.4249 | 13.5811 | 4400 | 0.5572 | 5998032 |
0.3631 | 14.1978 | 4600 | 0.5687 | 6269792 |
0.4563 | 14.8161 | 4800 | 0.5626 | 6541248 |
0.3545 | 15.4328 | 5000 | 0.5852 | 6815200 |
0.3135 | 16.0495 | 5200 | 0.6189 | 7086224 |
0.3561 | 16.6677 | 5400 | 0.6123 | 7360560 |
0.3582 | 17.2844 | 5600 | 0.6112 | 7632240 |
0.3834 | 17.9026 | 5800 | 0.5843 | 7904432 |
0.3268 | 18.5193 | 6000 | 0.6199 | 8177168 |
0.27 | 19.1360 | 6200 | 0.6794 | 8449968 |
0.3261 | 19.7543 | 6400 | 0.6375 | 8722992 |
0.262 | 20.3709 | 6600 | 0.6706 | 8996224 |
0.2588 | 20.9892 | 6800 | 0.6481 | 9269504 |
0.2761 | 21.6059 | 7000 | 0.7299 | 9542432 |
0.2007 | 22.2226 | 7200 | 0.7841 | 9812704 |
0.2119 | 22.8408 | 7400 | 0.7382 | 10086272 |
0.1575 | 23.4575 | 7600 | 0.7728 | 10358832 |
0.1397 | 24.0742 | 7800 | 0.8269 | 10630000 |
0.1879 | 24.6924 | 8000 | 0.8175 | 10904880 |
0.1317 | 25.3091 | 8200 | 0.8720 | 11176208 |
0.1594 | 25.9274 | 8400 | 0.9042 | 11451344 |
0.1193 | 26.5440 | 8600 | 0.8620 | 11723328 |
0.0803 | 27.1607 | 8800 | 0.9757 | 11996224 |
0.1226 | 27.7790 | 9000 | 0.9386 | 12267520 |
0.0938 | 28.3957 | 9200 | 0.9238 | 12542064 |
0.0519 | 29.0124 | 9400 | 1.0646 | 12812048 |
0.0728 | 29.6306 | 9600 | 1.0750 | 13085264 |
0.0463 | 30.2473 | 9800 | 1.0078 | 13356384 |
0.0744 | 30.8655 | 10000 | 1.0580 | 13629216 |
0.0701 | 31.4822 | 10200 | 1.0451 | 13902736 |
0.0504 | 32.0989 | 10400 | 1.0477 | 14174192 |
0.0352 | 32.7172 | 10600 | 1.1435 | 14448176 |
0.0855 | 33.3338 | 10800 | 1.0730 | 14718096 |
0.0376 | 33.9521 | 11000 | 1.0351 | 14992048 |
0.0484 | 34.5688 | 11200 | 1.1395 | 15265072 |
0.0267 | 35.1855 | 11400 | 1.1202 | 15538960 |
0.0298 | 35.8037 | 11600 | 1.1337 | 15812880 |
0.0341 | 36.4204 | 11800 | 1.1777 | 16082608 |
0.0415 | 37.0371 | 12000 | 1.1897 | 16357888 |
0.0287 | 37.6553 | 12200 | 1.2221 | 16627872 |
0.0388 | 38.2720 | 12400 | 1.1698 | 16900336 |
0.0232 | 38.8903 | 12600 | 1.1674 | 17175024 |
0.0238 | 39.5070 | 12800 | 1.1664 | 17446864 |
0.0163 | 40.1236 | 13000 | 1.2493 | 17716560 |
0.0154 | 40.7419 | 13200 | 1.3187 | 17991792 |
0.0173 | 41.3586 | 13400 | 1.2568 | 18262992 |
0.0164 | 41.9768 | 13600 | 1.2448 | 18536880 |
0.0158 | 42.5935 | 13800 | 1.2337 | 18806784 |
0.0111 | 43.2102 | 14000 | 1.2544 | 19080608 |
0.0216 | 43.8284 | 14200 | 1.3476 | 19352320 |
0.0259 | 44.4451 | 14400 | 1.2956 | 19624544 |
0.013 | 45.0618 | 14600 | 1.2143 | 19896064 |
0.0283 | 45.6801 | 14800 | 1.2005 | 20168064 |
0.0095 | 46.2968 | 15000 | 1.3231 | 20440208 |
0.0119 | 46.9150 | 15200 | 1.2639 | 20713296 |
0.008 | 47.5317 | 15400 | 1.3380 | 20985744 |
0.0117 | 48.1484 | 15600 | 1.2504 | 21257920 |
0.0175 | 48.7666 | 15800 | 1.2863 | 21529248 |
0.019 | 49.3833 | 16000 | 1.3123 | 21800992 |
0.0077 | 50.0 | 16200 | 1.2967 | 22073392 |
0.0052 | 50.6182 | 16400 | 1.3633 | 22345648 |
0.01 | 51.2349 | 16600 | 1.3670 | 22617984 |
0.0185 | 51.8532 | 16800 | 1.3321 | 22892544 |
0.0037 | 52.4699 | 17000 | 1.4302 | 23163488 |
0.0382 | 53.0866 | 17200 | 1.3213 | 23438320 |
0.0034 | 53.7048 | 17400 | 1.4571 | 23708720 |
0.0031 | 54.3215 | 17600 | 1.3874 | 23984304 |
0.011 | 54.9397 | 17800 | 1.4203 | 24256368 |
0.0037 | 55.5564 | 18000 | 1.3831 | 24527040 |
0.0009 | 56.1731 | 18200 | 1.4859 | 24799312 |
0.0012 | 56.7913 | 18400 | 1.5054 | 25072848 |
0.0028 | 57.4080 | 18600 | 1.4733 | 25347056 |
0.0124 | 58.0247 | 18800 | 1.5096 | 25618400 |
0.0144 | 58.6430 | 19000 | 1.3225 | 25892960 |
0.0057 | 59.2597 | 19200 | 1.4172 | 26164688 |
0.0103 | 59.8779 | 19400 | 1.3579 | 26437392 |
0.0153 | 60.4946 | 19600 | 1.4063 | 26710176 |
0.0056 | 61.1113 | 19800 | 1.4266 | 26981728 |
0.0104 | 61.7295 | 20000 | 1.3551 | 27253632 |
0.0035 | 62.3462 | 20200 | 1.4744 | 27524928 |
0.0028 | 62.9645 | 20400 | 1.5116 | 27799712 |
0.0006 | 63.5811 | 20600 | 1.5977 | 28071024 |
0.0005 | 64.1978 | 20800 | 1.5763 | 28342880 |
0.0003 | 64.8161 | 21000 | 1.6289 | 28617696 |
0.0003 | 65.4328 | 21200 | 1.6688 | 28888112 |
0.0004 | 66.0495 | 21400 | 1.6156 | 29162944 |
0.0003 | 66.6677 | 21600 | 1.6829 | 29434784 |
0.0001 | 67.2844 | 21800 | 1.6700 | 29706800 |
0.0003 | 67.9026 | 22000 | 1.6916 | 29980240 |
0.0001 | 68.5193 | 22200 | 1.7333 | 30250192 |
0.0002 | 69.1360 | 22400 | 1.7389 | 30522672 |
0.0001 | 69.7543 | 22600 | 1.7203 | 30795024 |
0.0001 | 70.3709 | 22800 | 1.7700 | 31066544 |
0.0001 | 70.9892 | 23000 | 1.7697 | 31338128 |
0.0001 | 71.6059 | 23200 | 1.8099 | 31609104 |
0.0007 | 72.2226 | 23400 | 1.8562 | 31881424 |
0.0002 | 72.8408 | 23600 | 1.7837 | 32155024 |
0.0001 | 73.4575 | 23800 | 1.8126 | 32425312 |
0.0001 | 74.0742 | 24000 | 1.8575 | 32698784 |
0.0001 | 74.6924 | 24200 | 1.8753 | 32974144 |
0.0001 | 75.3091 | 24400 | 1.9167 | 33245216 |
0.026 | 75.9274 | 24600 | 1.1968 | 33517088 |
0.0078 | 76.5440 | 24800 | 1.3782 | 33788432 |
0.0223 | 77.1607 | 25000 | 1.5010 | 34060416 |
0.003 | 77.7790 | 25200 | 1.5150 | 34333408 |
0.0016 | 78.3957 | 25400 | 1.6160 | 34605392 |
0.0009 | 79.0124 | 25600 | 1.5820 | 34879536 |
0.0004 | 79.6306 | 25800 | 1.6513 | 35153488 |
0.0002 | 80.2473 | 26000 | 1.6964 | 35424912 |
0.0001 | 80.8655 | 26200 | 1.7483 | 35698064 |
0.0002 | 81.4822 | 26400 | 1.7371 | 35968160 |
0.0001 | 82.0989 | 26600 | 1.7791 | 36240928 |
0.0021 | 82.7172 | 26800 | 1.7728 | 36514208 |
0.0001 | 83.3338 | 27000 | 1.7723 | 36785136 |
0.0001 | 83.9521 | 27200 | 1.8002 | 37061648 |
0.0012 | 84.5688 | 27400 | 1.8043 | 37333648 |
0.0001 | 85.1855 | 27600 | 1.8355 | 37605184 |
0.0001 | 85.8037 | 27800 | 1.8401 | 37875360 |
0.0001 | 86.4204 | 28000 | 1.8688 | 38150208 |
0.0001 | 87.0371 | 28200 | 1.8104 | 38422048 |
0.0001 | 87.6553 | 28400 | 1.8730 | 38692224 |
0.0001 | 88.2720 | 28600 | 1.8787 | 38964176 |
0.0001 | 88.8903 | 28800 | 1.8849 | 39235184 |
0.003 | 89.5070 | 29000 | 1.9233 | 39507520 |
0.001 | 90.1236 | 29200 | 1.9127 | 39779328 |
0.0022 | 90.7419 | 29400 | 1.8981 | 40051520 |
0.0 | 91.3586 | 29600 | 1.9303 | 40322576 |
0.0001 | 91.9768 | 29800 | 1.9180 | 40596016 |
0.0001 | 92.5935 | 30000 | 1.9204 | 40867568 |
0.0001 | 93.2102 | 30200 | 1.9712 | 41140848 |
0.0 | 93.8284 | 30400 | 1.9761 | 41412848 |
0.0001 | 94.4451 | 30600 | 1.9585 | 41683920 |
0.0 | 95.0618 | 30800 | 1.9967 | 41959008 |
0.0 | 95.6801 | 31000 | 1.9950 | 42231520 |
0.0001 | 96.2968 | 31200 | 1.9839 | 42502416 |
0.0 | 96.9150 | 31400 | 2.0041 | 42776304 |
0.0001 | 97.5317 | 31600 | 2.0162 | 43048176 |
0.0 | 98.1484 | 31800 | 2.0103 | 43320144 |
0.0 | 98.7666 | 32000 | 2.0081 | 43591728 |
0.0027 | 99.3833 | 32200 | 2.0273 | 43866048 |
0.0 | 100.0 | 32400 | 2.0347 | 44137040 |
0.0 | 100.6182 | 32600 | 2.0524 | 44408848 |
0.0008 | 101.2349 | 32800 | 2.0672 | 44682912 |
0.0 | 101.8532 | 33000 | 2.0429 | 44956000 |
0.0022 | 102.4699 | 33200 | 2.0500 | 45227824 |
0.0 | 103.0866 | 33400 | 2.0476 | 45498320 |
0.0 | 103.7048 | 33600 | 2.0636 | 45773648 |
0.0012 | 104.3215 | 33800 | 2.0808 | 46044128 |
0.0 | 104.9397 | 34000 | 2.0721 | 46317504 |
0.0 | 105.5564 | 34200 | 2.0830 | 46589024 |
0.0013 | 106.1731 | 34400 | 2.0945 | 46863680 |
0.0 | 106.7913 | 34600 | 2.0967 | 47135520 |
0.0 | 107.4080 | 34800 | 2.1042 | 47407056 |
0.0 | 108.0247 | 35000 | 2.0969 | 47680112 |
0.0 | 108.6430 | 35200 | 2.1074 | 47951632 |
0.0 | 109.2597 | 35400 | 2.1103 | 48224016 |
0.0 | 109.8779 | 35600 | 2.1072 | 48497072 |
0.0 | 110.4946 | 35800 | 2.1081 | 48768624 |
0.0 | 111.1113 | 36000 | 2.1116 | 49041488 |
0.0 | 111.7295 | 36200 | 2.1243 | 49314352 |
0.0 | 112.3462 | 36400 | 2.1215 | 49584848 |
0.0 | 112.9645 | 36600 | 2.1199 | 49858864 |
0.0 | 113.5811 | 36800 | 2.1292 | 50130000 |
0.0012 | 114.1978 | 37000 | 2.1276 | 50404128 |
0.0 | 114.8161 | 37200 | 2.1346 | 50678112 |
0.0012 | 115.4328 | 37400 | 2.1323 | 50946800 |
0.0 | 116.0495 | 37600 | 2.1319 | 51219680 |
0.0 | 116.6677 | 37800 | 2.1324 | 51492544 |
0.0 | 117.2844 | 38000 | 2.1351 | 51764160 |
0.0 | 117.9026 | 38200 | 2.1349 | 52039488 |
0.0 | 118.5193 | 38400 | 2.1382 | 52311648 |
0.0 | 119.1360 | 38600 | 2.1390 | 52584960 |
0.0 | 119.7543 | 38800 | 2.1410 | 52855712 |
0.0 | 120.3709 | 39000 | 2.1428 | 53128480 |
0.0 | 120.9892 | 39200 | 2.1429 | 53401056 |
0.0 | 121.6059 | 39400 | 2.1412 | 53673600 |
0.0 | 122.2226 | 39600 | 2.1376 | 53943712 |
0.0 | 122.8408 | 39800 | 2.1381 | 54217344 |
0.0 | 123.4575 | 40000 | 2.1370 | 54490336 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_stsb_1745333591
Base model
meta-llama/Meta-Llama-3-8B-Instruct