|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- loss:OnlineContrastiveLoss |
|
base_model: Alibaba-NLP/gte-modernbert-base |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_f1 |
|
- cosine_ap |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base |
|
results: |
|
- task: |
|
type: my-binary-classification |
|
name: My Binary Classification |
|
dataset: |
|
name: Quora |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.90 |
|
name: Cosine Accuracy |
|
- type: cosine_f1 |
|
value: 0.87 |
|
name: Cosine F1 |
|
- type: cosine_precision |
|
value: 0.84 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.90 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.92 |
|
name: Cosine Ap |
|
--- |
|
|
|
# Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("redis/langcache-embed-v1") |
|
# Run inference |
|
sentences = [ |
|
'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?', |
|
'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?', |
|
"Are Danish Sait's prank calls fake?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
|
|
``` |
|
|
|
#### Binary Classification |
|
|
|
|
|
| Metric | Value | |
|
|:--------------------------|:----------| |
|
| cosine_accuracy | 0.90 | |
|
| cosine_f1 | 0.87 | |
|
| cosine_precision | 0.84 | |
|
| cosine_recall | 0.90 | |
|
| **cosine_ap** | 0.92 | |
|
|
|
|
|
### Training Dataset |
|
|
|
#### Quora |
|
|
|
* Dataset: [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset) |
|
* Size: 323491 training samples |
|
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code> |
|
|
|
### Evaluation Dataset |
|
|
|
#### Quora |
|
|
|
* Dataset: [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset) |
|
* Size: 53486 evaluation samples |
|
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code> |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Redis Langcache-embed Models |
|
```bibtex |
|
@inproceedings{langcache-embed-v1, |
|
title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data", |
|
author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion", |
|
month = "04", |
|
year = "2025", |
|
url = "https://arxiv.org/abs/2504.02268", |
|
} |
|
``` |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
|