PaliGemma3_FT_OCR
This model is a fine-tuned version of google/paligemma-3b-pt-448 on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 50
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.2.1+cu121
- Tokenizers 0.21.0
Inference
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import torch
import json
# Load model and processor
model_id = "google/paligemma-3b-pt-448"
peft_adapter_id = "riphunter7001x/PaliGemma3_FT_OCR"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id)
model.load_adapter(peft_adapter_id).eval()
TORCH_DTYPE = model.dtype
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load and process image
image = Image.open("image.jpg")
prefix = "<image>extract Document data in JSON format"
inputs = processor(
text=prefix,
images=image,
return_tensors="pt"
).to(TORCH_DTYPE).to(DEVICE)
prefix_length = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=512, do_sample=False)
generation = generation[0][prefix_length:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(json.dumps(json.loads(decoded), indent=4))
This code loads the fine-tuned PaliGemma model, processes an input image, and extracts document data in JSON format.
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for riphunter7001x/PaliGemma3_FT_OCR
Base model
google/paligemma-3b-pt-448