twitter-bitcoin-emotion-classification

This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7032
  • Accuracy: 0.6561
  • F1: 0.6572
  • Macro F1: 0.6226
  • Precision: 0.6630
  • Recall: 0.6561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

image/png

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Precision Recall
2.9772 0.2092 500 2.6140 0.4598 0.3456 0.2565 0.2855 0.4598
2.0831 0.4185 1000 1.9186 0.5043 0.4434 0.4006 0.5917 0.5043
1.7199 0.6277 1500 1.6219 0.5694 0.5441 0.5039 0.5912 0.5694
1.56 0.8370 2000 1.4268 0.6031 0.5922 0.5572 0.6167 0.6031
1.3383 1.0460 2500 1.3762 0.6220 0.6180 0.5814 0.6289 0.6220
1.3473 1.2553 3000 1.3732 0.6188 0.6132 0.5774 0.6367 0.6188
1.1643 1.4645 3500 1.4119 0.6239 0.6247 0.5894 0.6391 0.6239
1.2617 1.6738 4000 1.3296 0.6195 0.6219 0.5792 0.6453 0.6195
1.2549 1.8830 4500 1.3182 0.6330 0.6351 0.5975 0.6460 0.6330
0.8836 2.0921 5000 1.4422 0.6247 0.6298 0.6006 0.6528 0.6247
0.8652 2.3013 5500 1.4682 0.6475 0.6488 0.6120 0.6563 0.6475
0.9502 2.5106 6000 1.5682 0.6402 0.6438 0.6128 0.6559 0.6402
0.8769 2.7198 6500 1.5807 0.6392 0.6435 0.6100 0.6583 0.6392
0.7853 2.9291 7000 1.5285 0.6389 0.6403 0.6077 0.6555 0.6389
0.6828 3.1381 7500 1.6189 0.6467 0.6499 0.6170 0.6588 0.6467
0.6566 3.3474 8000 1.4571 0.6530 0.6519 0.6140 0.6558 0.6530
0.6767 3.5566 8500 1.6671 0.6567 0.6585 0.6216 0.6613 0.6567
0.6806 3.7659 9000 1.5203 0.6518 0.6542 0.6195 0.6628 0.6518
0.7289 3.9751 9500 1.5431 0.6524 0.6568 0.6224 0.6669 0.6524
0.5355 4.1841 10000 1.6772 0.6501 0.6528 0.6185 0.6619 0.6501
0.5352 4.3934 10500 1.7032 0.6561 0.6572 0.6226 0.6630 0.6561
0.615 4.6026 11000 1.6694 0.6504 0.6527 0.6175 0.6608 0.6504
0.5843 4.8119 11500 1.6443 0.6541 0.6567 0.6213 0.6634 0.6541

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
32
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sandiumenge/twitter-bitcoin-emotion-classification

Finetuned
(246)
this model