twitter-bitcoin-emotion-classification-human
This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3978
- Accuracy: 0.6456
- F1: 0.6425
- Macro F1: 0.5712
- Precision: 0.6442
- Recall: 0.6456
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Macro F1 | Precision | Recall |
---|---|---|---|---|---|---|---|---|
0.3304 | 1.0 | 2526 | 1.3952 | 0.6213 | 0.6209 | 0.5674 | 0.6331 | 0.6213 |
0.34 | 2.0 | 5052 | 1.5760 | 0.6219 | 0.6211 | 0.5602 | 0.6294 | 0.6219 |
0.2474 | 3.0 | 7578 | 1.6595 | 0.6292 | 0.6320 | 0.5721 | 0.6390 | 0.6292 |
0.1873 | 4.0 | 10104 | 1.9395 | 0.6397 | 0.6385 | 0.5782 | 0.6394 | 0.6397 |
0.1911 | 5.0 | 12630 | 1.9367 | 0.6404 | 0.6396 | 0.5794 | 0.6406 | 0.6404 |
0.1356 | 6.0 | 15156 | 2.2881 | 0.6403 | 0.6376 | 0.5717 | 0.6379 | 0.6403 |
0.0985 | 7.0 | 17682 | 2.3978 | 0.6456 | 0.6425 | 0.5712 | 0.6442 | 0.6456 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for sandiumenge/twitter-bitcoin-emotion-classification-human
Base model
vinai/bertweet-base