whisper-small-ar / README.md
saralameri's picture
End of training
88acdd6 verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-Small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Samll Ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: ar
          split: test
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.497132774591975

Whisper Samll Ar

This model is a fine-tuned version of openai/whisper-Small on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3402
  • Wer: 44.4971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3175 0.4122 1000 0.4157 50.2739
0.2705 0.8244 2000 0.3707 49.3769
0.1648 1.2366 3000 0.3512 45.7212
0.1485 1.6488 4000 0.3402 44.4971

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0