SelfLong-Llama3.2-3B-Instruct-1M
Wang, Liang, Nan Yang, Xingxing Zhang, Xiaolong Huang, and Furu Wei. "Bootstrap Your Own Context Length." arXiv preprint arXiv:2412.18860 (2024).
Overview
The SelfLong series of Large Language Models (LLMs) are designed to handle extremely long contexts, reaching up to 1 million tokens. These models, with parameter sizes of 1B, 3B, and 8B, are initialized from the Llama-3.2 and Llama-3.1 architectures.
Performance (RULER-1M)
The following table presents the results of the SelfLong models on the RULER-1M benchmark. The numbers represent the RULER score averaged over 13 tasks at different support lengths.
Model | Support Length | 32k | 64k | 128k | 256k | 512k | 1M |
---|---|---|---|---|---|---|---|
Llama-3.2-1B-Instruct | 128k | 64.7 | 43.1 | 0.0 | - | - | - |
Llama-3.2-3B-Instruct | 128k | 77.8 | 70.4 | 0.8 | - | - | - |
Llama-3.1-8B-Instruct | 128k | 89.8 | 85.4 | 78.5 | - | - | - |
gradientai/Llama-3-8B-Instruct-Gradient-1048k | 1M | 81.8 | 78.6 | 77.2 | 74.2 | 70.3 | 64.3 |
SelfLong-1B-1M | 1M | 61.3 | 56.6 | 54.7 | 46.7 | 40.7 | 31.1 |
SelfLong-3B-1M | 1M | 80.5 | 78.0 | 75.5 | 68.8 | 58.5 | 38.8 |
SelfLong-8B-1M | 1M | 89.5 | 84.0 | 82.0 | 79.7 | 78.2 | 69.6 |
Note:
- Bold indicates the best performance.
- Underline indicates the second-best performance.
-
indicates that the model does not support the given context length.
Evaluation on RULER-1M Dataset
To evaluate the SelfLong models on the RULER-1M dataset, you can follow these steps:
- Start vllm server:
PROC_PER_NODE=$(nvidia-smi --list-gpus | wc -l)
# Reduce this number if you have limited GPU memory
MAX_MODEL_LEN=1048576
MODEL_NAME_OR_PATH="self-long/SelfLong-Llama3.2-3B-Instruct-1M"
echo "Starting VLLM server..."
vllm serve "${MODEL_NAME_OR_PATH}" \
--dtype auto \
--disable-log-stats --disable-log-requests --disable-custom-all-reduce \
--enable_chunked_prefill --max_num_batched_tokens 8192 \
--tensor-parallel-size "${PROC_PER_NODE}" \
--max-model-len "${MAX_MODEL_LEN}" \
--gpu_memory_utilization 0.9 \
--api-key token-123 &
- Get Completions
from openai import OpenAI
from datasets import load_dataset
client = OpenAI(
base_url="http://localhost:8000/v1", # Default vLLM server address
api_key="token-123"
)
ds = load_dataset('self-long/RULER-llama3-1M', f'niah_single_1_4k', split='validation')
prompt = ds[0]['input']
completion = client.completions.create(
model='self-long/SelfLong-Llama3.2-3B-Instruct-1M',
prompt=prompt,
max_tokens=100,
)
print(prompt)
print(completion.choices[0].text)
- For evaluation, please refer to the evaluation script provided in the RULER repository: https://github.com/NVIDIA/RULER/blob/main/scripts/eval/evaluate.py.
Note that different vLLM and Torch versions may produce slightly different decoding results.
References
@article{wang2024bootstrap,
title={Bootstrap Your Own Context Length},
author={Wang, Liang and Yang, Nan and Zhang, Xingxing and Huang, Xiaolong and Wei, Furu},
journal={arXiv preprint arXiv:2412.18860},
year={2024}
}
- Downloads last month
- 2