sercetexam9's picture
Training completed!
a4b84ee verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: sercetexam9/BantuBERTa-vmw-finetuned-vmw-MICRO
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: BantuBERTa-vmw-finetuned-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-micro
    results: []

BantuBERTa-vmw-finetuned-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-micro

This model is a fine-tuned version of sercetexam9/BantuBERTa-vmw-finetuned-vmw-MICRO on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0908
  • F1: 0.7896
  • Roc Auc: 0.8843
  • Accuracy: 0.8544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.0976 1.0 169 0.0832 0.7877 0.8538 0.8603
0.0954 2.0 338 0.0827 0.7804 0.8586 0.8559
0.0741 3.0 507 0.0908 0.7896 0.8843 0.8544
0.063 4.0 676 0.1013 0.7048 0.8015 0.8187
0.0543 5.0 845 0.0973 0.7664 0.8646 0.8410
0.0546 6.0 1014 0.0998 0.7510 0.8527 0.8321
0.0516 7.0 1183 0.1034 0.7261 0.8329 0.8202

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0