distilbert-base-cased-finetuned-ner-final
This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7385
- Precision: 0.8305
- Recall: 0.8507
- F1: 0.8405
- Accuracy: 0.9634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.73519627984468e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.0919159187150491
- num_epochs: 10
- label_smoothing_factor: 0.1089540797247441
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.7376 | 1.0 | 4250 | 0.7348 | 0.7949 | 0.8159 | 0.8053 | 0.9569 |
0.7181 | 2.0 | 8500 | 0.7202 | 0.8213 | 0.8292 | 0.8252 | 0.9608 |
0.7069 | 3.0 | 12750 | 0.7200 | 0.8015 | 0.8415 | 0.8210 | 0.9611 |
0.69 | 4.0 | 17000 | 0.7189 | 0.8223 | 0.8418 | 0.8320 | 0.9623 |
0.6789 | 5.0 | 21250 | 0.7225 | 0.8261 | 0.8500 | 0.8379 | 0.9635 |
0.6685 | 6.0 | 25500 | 0.7253 | 0.8298 | 0.8481 | 0.8389 | 0.9636 |
0.662 | 7.0 | 29750 | 0.7318 | 0.8275 | 0.8472 | 0.8372 | 0.9632 |
0.6542 | 8.0 | 34000 | 0.7335 | 0.8254 | 0.8504 | 0.8377 | 0.9632 |
0.6475 | 9.0 | 38250 | 0.7369 | 0.8297 | 0.8514 | 0.8404 | 0.9638 |
0.6464 | 10.0 | 42500 | 0.7385 | 0.8305 | 0.8507 | 0.8405 | 0.9634 |
Framework versions
- Transformers 4.50.1
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for shellypeng/distilbert-base-cased-finetuned-ner-final
Base model
distilbert/distilbert-base-cased