|
--- |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
pipeline_tag: video-text-to-text |
|
--- |
|
|
|
# Slow-Fast Architecture for Video Multi-Modal Large Language Models |
|
|
|
This repository contains the model presented in the paper [Slow-Fast Architecture for Video Multi-Modal Large Language Models](https://huggingface.co/papers/2504.01328). |
|
|
|
Code: https://github.com/SHI-Labs/Slow-Fast-Video-Multimodal-LLM |
|
|
|
## Introduction |
|
This model uses a novel slow-fast architecture to balance temporal resolution and spatial detail in video understanding, overcoming the sequence length limitations of traditional LLMs. It employs a dual-token strategy: "fast" tokens provide a quick overview, while "slow" tokens allow instruction-aware extraction of details via cross-attention. |
|
|
|
## Usage |
|
```python |
|
import torch |
|
import os |
|
import numpy as np |
|
from decord import VideoReader, cpu |
|
|
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.builder import load_pretrained_model |
|
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path |
|
from llava.utils import disable_torch_init |
|
|
|
def load_video(video_path, max_frames_num): |
|
vr = VideoReader(video_path, num_threads=4) |
|
fps = round(vr.get_avg_fps()) |
|
frame_idx = [i for i in range(0, len(vr), fps)] |
|
|
|
uniform_sampled_frames = np.linspace(0, len(vr) - 1, max_frames_num, dtype=int) |
|
frame_idx = uniform_sampled_frames.tolist() |
|
spare_frames = vr.get_batch(frame_idx).asnumpy() |
|
|
|
return spare_frames |
|
|
|
# Model |
|
# Ensure you have cloned the code repository: git clone https://github.com/SHI-Labs/Slow-Fast-Video-Multimodal-LLM.git |
|
model_path = "shi-labs/slowfast-video-mllm-qwen2-7b-convnext-576-frame64-s1t4" # Or other checkpoint |
|
video_path = "Slow-Fast-Video-Multimodal-LLM/assets/catinterrupt.mp4" # Example video path from cloned repo |
|
question = "Please describe this video in detail." |
|
max_frames=64 # Set according to the specific checkpoint |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(model_path) |
|
model_name = get_model_name_from_path(model_path) |
|
# Make sure to pass trust_remote_code=True |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, use_flash_attn=True, trust_remote_code=True) |
|
|
|
if model.config.mm_use_im_start_end: |
|
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + " |
|
" + question |
|
else: |
|
prompt = DEFAULT_IMAGE_TOKEN + " |
|
" + question |
|
|
|
conv = conv_templates["qwen_1_5"].copy() |
|
conv.append_message(conv.roles[0], prompt) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
# read and process video |
|
video = load_video(video_path, max_frames_num=max_frames) |
|
video_tensor = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].half().cuda() |
|
videos = [video_tensor] |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') |
|
input_ids = input_ids.to(device='cuda', non_blocking=True).unsqueeze(dim=0) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=videos, |
|
do_sample=True, |
|
max_new_tokens=1024, |
|
num_beams=1, |
|
temperature=0.2, |
|
top_p=1.0, |
|
use_cache=True) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(f"User input: {question} |
|
") |
|
print(outputs) |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{wang2025slowfast, |
|
title={Slow-Fast Architecture for Video Multi-Modal Large Language Models}, |
|
author={Haotian Wang and Zhengyuan Yang and Yue Zhao and Bin Lin and Zhe Chen and Yue Cao and Hongxia Yang}, |
|
year={2025}, |
|
eprint={2504.01328},\ |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2504.01328v1}, |
|
} |
|
``` |