Add model card
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: video-text-to-text
|
5 |
+
---
|
6 |
+
|
7 |
+
# Slow-Fast Architecture for Video Multi-Modal Large Language Models
|
8 |
+
|
9 |
+
This repository contains the model presented in the paper [Slow-Fast Architecture for Video Multi-Modal Large Language Models](https://huggingface.co/papers/2504.01328).
|
10 |
+
|
11 |
+
Code: https://github.com/SHI-Labs/Slow-Fast-Video-Multimodal-LLM
|
12 |
+
|
13 |
+
## Introduction
|
14 |
+
This model uses a novel slow-fast architecture to balance temporal resolution and spatial detail in video understanding, overcoming the sequence length limitations of traditional LLMs. It employs a dual-token strategy: "fast" tokens provide a quick overview, while "slow" tokens allow instruction-aware extraction of details via cross-attention.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
```python
|
18 |
+
import torch
|
19 |
+
import os
|
20 |
+
import numpy as np
|
21 |
+
from decord import VideoReader, cpu
|
22 |
+
|
23 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
24 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
25 |
+
from llava.model.builder import load_pretrained_model
|
26 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path
|
27 |
+
from llava.utils import disable_torch_init
|
28 |
+
|
29 |
+
def load_video(video_path, max_frames_num):
|
30 |
+
vr = VideoReader(video_path, num_threads=4)
|
31 |
+
fps = round(vr.get_avg_fps())
|
32 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
33 |
+
|
34 |
+
uniform_sampled_frames = np.linspace(0, len(vr) - 1, max_frames_num, dtype=int)
|
35 |
+
frame_idx = uniform_sampled_frames.tolist()
|
36 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
37 |
+
|
38 |
+
return spare_frames
|
39 |
+
|
40 |
+
# Model
|
41 |
+
# Ensure you have cloned the code repository: git clone https://github.com/SHI-Labs/Slow-Fast-Video-Multimodal-LLM.git
|
42 |
+
model_path = "shi-labs/slowfast-video-mllm-qwen2-7b-convnext-576-frame64-s1t4" # Or other checkpoint
|
43 |
+
video_path = "Slow-Fast-Video-Multimodal-LLM/assets/catinterrupt.mp4" # Example video path from cloned repo
|
44 |
+
question = "Please describe this video in detail."
|
45 |
+
max_frames=64 # Set according to the specific checkpoint
|
46 |
+
|
47 |
+
disable_torch_init()
|
48 |
+
model_path = os.path.expanduser(model_path)
|
49 |
+
model_name = get_model_name_from_path(model_path)
|
50 |
+
# Make sure to pass trust_remote_code=True
|
51 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, use_flash_attn=True, trust_remote_code=True)
|
52 |
+
|
53 |
+
if model.config.mm_use_im_start_end:
|
54 |
+
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + "
|
55 |
+
" + question
|
56 |
+
else:
|
57 |
+
prompt = DEFAULT_IMAGE_TOKEN + "
|
58 |
+
" + question
|
59 |
+
|
60 |
+
conv = conv_templates["qwen_1_5"].copy()
|
61 |
+
conv.append_message(conv.roles[0], prompt)
|
62 |
+
conv.append_message(conv.roles[1], None)
|
63 |
+
prompt = conv.get_prompt()
|
64 |
+
|
65 |
+
# read and process video
|
66 |
+
video = load_video(video_path, max_frames_num=max_frames)
|
67 |
+
video_tensor = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].half().cuda()
|
68 |
+
videos = [video_tensor]
|
69 |
+
|
70 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
71 |
+
input_ids = input_ids.to(device='cuda', non_blocking=True).unsqueeze(dim=0)
|
72 |
+
|
73 |
+
with torch.inference_mode():
|
74 |
+
output_ids = model.generate(
|
75 |
+
input_ids,
|
76 |
+
images=videos,
|
77 |
+
do_sample=True,
|
78 |
+
max_new_tokens=1024,
|
79 |
+
num_beams=1,
|
80 |
+
temperature=0.2,
|
81 |
+
top_p=1.0,
|
82 |
+
use_cache=True)
|
83 |
+
|
84 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
85 |
+
print(f"User input: {question}
|
86 |
+
")
|
87 |
+
print(outputs)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Citation
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@misc{wang2025slowfast,
|
94 |
+
title={Slow-Fast Architecture for Video Multi-Modal Large Language Models},
|
95 |
+
author={Haotian Wang and Zhengyuan Yang and Yue Zhao and Bin Lin and Zhe Chen and Yue Cao and Hongxia Yang},
|
96 |
+
year={2025},
|
97 |
+
eprint={2504.01328},\
|
98 |
+
archivePrefix={arXiv},
|
99 |
+
primaryClass={cs.CV},
|
100 |
+
url={https://arxiv.org/abs/2504.01328v1},
|
101 |
+
}
|
102 |
+
```
|