Text Generation
Transformers
Safetensors
llama
Generated from Trainer
conversational
text-generation-inference
Inference Endpoints

Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

# 33 but w/ 5e-6 LR

base_model: unsloth/phi-4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# User Liger
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

chat_template: tokenizer_default
datasets:
  - path: shisa-ai/shisa-v1-athenev2-reannotated-filtered
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
  - path: shisa-ai/shisa-v2-roleplaying
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: role
      content: content
    roles:
      system:
        - system
      assistant:
        - gpt
        - model
        - assistant
      user:
        - human
        - user
    roles_to_train: ["assistant"]
  - path: shisa-ai/translation-master-set
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: role
      content: content
    roles:
      system:
        - system
      assistant:
        - gpt
        - model
        - assistant
      user:
        - human
        - user
    roles_to_train: ["assistant"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-73-rafathenev2.rp.tl.unphi42e6-shisa-v2-unphi-4-14b

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

# marginal difference
neftune_noise_alpha: 5

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-73-rafathenev2.rp.tl.unphi42e6-shisa-v2-unphi-4-14b

gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0001
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

outputs/ablation-73-rafathenev2.rp.tl.unphi42e6-shisa-v2-unphi-4-14b

This model is a fine-tuned version of unsloth/phi-4 on the shisa-ai/shisa-v1-athenev2-reannotated-filtered, the shisa-ai/shisa-v2-roleplaying and the shisa-ai/translation-master-set datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4463

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 175
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.6323 0.0017 1 0.6161
0.524 0.2506 147 0.5063
0.4596 0.5013 294 0.4791
0.4552 0.7519 441 0.4675
0.4389 1.0017 588 0.4603
0.4312 1.2523 735 0.4562
0.4404 1.5030 882 0.4527
0.4712 1.7536 1029 0.4498
0.4035 2.0034 1176 0.4477
0.4018 2.2540 1323 0.4480
0.3889 2.5047 1470 0.4469
0.4117 2.7553 1617 0.4463

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
14.7B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for shisa-ai/ablation-73-rafathenev2.rp.tl.unphi42e6-shisa-v2-unphi-4-14b

Base model

microsoft/phi-4
Finetuned
unsloth/phi-4
Finetuned
(61)
this model
Quantizations
1 model