Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torchvision.transforms as transforms | |
import torch.nn as nn | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision import transforms, datasets, models | |
# Define model | |
class RetinaNet(nn.Module): | |
def __init__(self, num_classes=2): | |
super(RetinaNet, self).__init__() | |
self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1) | |
# Freeze backbone parameters | |
for param in self.backbone.parameters(): | |
param.requires_grad = False | |
# Unfreeze later layers | |
for param in self.backbone.layer3.parameters(): | |
param.requires_grad = True | |
for param in self.backbone.layer4.parameters(): | |
param.requires_grad = False | |
# Modified classifier head | |
self.classifier = nn.Sequential( | |
nn.Linear(2048, 512), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Linear(512, num_classes) | |
# nn.Sigmoid() | |
) | |
def forward(self, x): | |
x = self.backbone.conv1(x) | |
x = self.backbone.bn1(x) | |
x = self.backbone.relu(x) | |
x = self.backbone.maxpool(x) | |
x = self.backbone.layer1(x) | |
x = self.backbone.layer2(x) | |
x = self.backbone.layer3(x) | |
x = self.backbone.layer4(x) | |
x = self.backbone.avgpool(x) | |
x = torch.flatten(x, 1) | |
x = self.classifier(x) | |
return x |