Spaces:
Running
Running
Update app.py
#14
by
Duskfallcrew
- opened
app.py
CHANGED
@@ -23,6 +23,32 @@ from typing import Dict, List, Optional
|
|
23 |
from huggingface_hub import login, HfApi
|
24 |
from types import SimpleNamespace
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
27 |
|
28 |
def is_valid_url(url):
|
@@ -30,26 +56,34 @@ def is_valid_url(url):
|
|
30 |
try:
|
31 |
result = urlparse(url)
|
32 |
return all([result.scheme, result.netloc])
|
33 |
-
except:
|
|
|
34 |
return False
|
35 |
|
36 |
def get_filename(url):
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
def get_supported_extensions():
|
|
|
50 |
return tuple([".ckpt", ".safetensors", ".pt", ".pth"])
|
51 |
|
52 |
def download_model(url, dst, output_widget):
|
|
|
53 |
filename = get_filename(url)
|
54 |
filepath = os.path.join(dst, filename)
|
55 |
try:
|
@@ -60,32 +94,34 @@ def download_model(url, dst, output_widget):
|
|
60 |
if "/blob/" in url:
|
61 |
url = url.replace("/blob/", "/resolve/")
|
62 |
subprocess.run(["aria2c","-x 16",url,"-d",dst,"-o",filename])
|
63 |
-
|
64 |
-
return filepath
|
65 |
except Exception as e:
|
66 |
-
|
67 |
-
|
68 |
|
69 |
def determine_load_checkpoint(model_to_load):
|
70 |
"""Determines if the model to load is a checkpoint, Diffusers model, or URL."""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
return None # handle this case as required
|
80 |
|
81 |
def create_model_repo(api, user, orgs_name, model_name, make_private=False):
|
82 |
"""Creates a Hugging Face model repository if it doesn't exist."""
|
83 |
-
if orgs_name == "":
|
84 |
-
repo_id = user["name"] + "/" + model_name.strip()
|
85 |
-
else:
|
86 |
-
repo_id = orgs_name + "/" + model_name.strip()
|
87 |
-
|
88 |
try:
|
|
|
|
|
|
|
|
|
|
|
89 |
validate_repo_id(repo_id)
|
90 |
api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
|
91 |
print(f"Model repo '{repo_id}' didn't exist, creating repo")
|
@@ -98,46 +134,54 @@ def create_model_repo(api, user, orgs_name, model_name, make_private=False):
|
|
98 |
|
99 |
def is_diffusers_model(model_path):
|
100 |
"""Checks if a given path is a valid Diffusers model directory."""
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
|
104 |
# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
|
105 |
|
106 |
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
|
107 |
"""Loads SDXL model components from a checkpoint file."""
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
def save_stable_diffusion_checkpoint(save_path, text_encoder1, text_encoder2, unet, epoch, global_step, ckpt_info, vae, logit_scale, save_dtype):
|
143 |
"""Saves the stable diffusion checkpoint."""
|
@@ -665,7 +709,7 @@ def main(model_to_load, save_precision_as, epoch, global_step, reference_model,
|
|
665 |
|
666 |
# Create tempdir, will only be there for the function
|
667 |
with tempfile.TemporaryDirectory() as output_path:
|
668 |
-
conversion_output = convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, use_xformers,
|
669 |
|
670 |
upload_output = upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private)
|
671 |
|
|
|
23 |
from huggingface_hub import login, HfApi
|
24 |
from types import SimpleNamespace
|
25 |
|
26 |
+
# Remove unused imports
|
27 |
+
# import os
|
28 |
+
# import gradio as gr
|
29 |
+
# import torch
|
30 |
+
# from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
|
31 |
+
# from transformers import CLIPTextModel, CLIPTextConfig
|
32 |
+
# from safetensors.torch import load_file
|
33 |
+
# from collections import OrderedDict
|
34 |
+
# import re
|
35 |
+
# import json
|
36 |
+
# import gdown
|
37 |
+
# import requests
|
38 |
+
# import subprocess
|
39 |
+
# from urllib.parse import urlparse, unquote
|
40 |
+
# from pathlib import Path
|
41 |
+
# import tempfile
|
42 |
+
# from tqdm import tqdm
|
43 |
+
# import psutil
|
44 |
+
# import math
|
45 |
+
# import shutil
|
46 |
+
# import hashlib
|
47 |
+
# from datetime import datetime
|
48 |
+
# from typing import Dict, List, Optional
|
49 |
+
# from huggingface_hub import login, HfApi
|
50 |
+
# from types import SimpleNamespace
|
51 |
+
|
52 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
53 |
|
54 |
def is_valid_url(url):
|
|
|
56 |
try:
|
57 |
result = urlparse(url)
|
58 |
return all([result.scheme, result.netloc])
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Error checking URL validity: {e}")
|
61 |
return False
|
62 |
|
63 |
def get_filename(url):
|
64 |
+
"""Extracts the filename from a URL."""
|
65 |
+
try:
|
66 |
+
response = requests.get(url, stream=True)
|
67 |
+
response.raise_for_status()
|
68 |
|
69 |
+
if 'content-disposition' in response.headers:
|
70 |
+
content_disposition = response.headers['content-disposition']
|
71 |
+
filename = re.findall('filename="?([^";]+)"?', content_disposition)[0]
|
72 |
+
else:
|
73 |
+
url_path = urlparse(url).path
|
74 |
+
filename = unquote(os.path.basename(url_path))
|
75 |
|
76 |
+
return filename
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error getting filename from URL: {e}")
|
79 |
+
return None
|
80 |
|
81 |
def get_supported_extensions():
|
82 |
+
"""Returns a tuple of supported model file extensions."""
|
83 |
return tuple([".ckpt", ".safetensors", ".pt", ".pth"])
|
84 |
|
85 |
def download_model(url, dst, output_widget):
|
86 |
+
"""Downloads a model from a URL to the specified destination."""
|
87 |
filename = get_filename(url)
|
88 |
filepath = os.path.join(dst, filename)
|
89 |
try:
|
|
|
94 |
if "/blob/" in url:
|
95 |
url = url.replace("/blob/", "/resolve/")
|
96 |
subprocess.run(["aria2c","-x 16",url,"-d",dst,"-o",filename])
|
97 |
+
return filepath
|
|
|
98 |
except Exception as e:
|
99 |
+
print(f"Error downloading model: {e}")
|
100 |
+
return None
|
101 |
|
102 |
def determine_load_checkpoint(model_to_load):
|
103 |
"""Determines if the model to load is a checkpoint, Diffusers model, or URL."""
|
104 |
+
try:
|
105 |
+
if is_valid_url(model_to_load) and (model_to_load.endswith(get_supported_extensions())):
|
106 |
+
return True
|
107 |
+
elif model_to_load.endswith(get_supported_extensions()):
|
108 |
+
return True
|
109 |
+
elif os.path.isdir(model_to_load):
|
110 |
+
required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
|
111 |
+
if required_folders.issubset(set(os.listdir(model_to_load))) and os.path.isfile(os.path.join(model_to_load, "model_index.json")):
|
112 |
+
return False
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error determining load checkpoint: {e}")
|
115 |
return None # handle this case as required
|
116 |
|
117 |
def create_model_repo(api, user, orgs_name, model_name, make_private=False):
|
118 |
"""Creates a Hugging Face model repository if it doesn't exist."""
|
|
|
|
|
|
|
|
|
|
|
119 |
try:
|
120 |
+
if orgs_name == "":
|
121 |
+
repo_id = user["name"] + "/" + model_name.strip()
|
122 |
+
else:
|
123 |
+
repo_id = orgs_name + "/" + model_name.strip()
|
124 |
+
|
125 |
validate_repo_id(repo_id)
|
126 |
api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
|
127 |
print(f"Model repo '{repo_id}' didn't exist, creating repo")
|
|
|
134 |
|
135 |
def is_diffusers_model(model_path):
|
136 |
"""Checks if a given path is a valid Diffusers model directory."""
|
137 |
+
try:
|
138 |
+
required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
|
139 |
+
return required_folders.issubset(set(os.listdir(model_path))) and os.path.isfile(os.path.join(model_path, "model_index.json"))
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Error checking if model is a Diffusers model: {e}")
|
142 |
+
return False
|
143 |
|
144 |
# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
|
145 |
|
146 |
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
|
147 |
"""Loads SDXL model components from a checkpoint file."""
|
148 |
+
try:
|
149 |
+
text_encoder1 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder").to(device)
|
150 |
+
text_encoder2 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder_2").to(device)
|
151 |
+
vae = AutoencoderKL.from_pretrained(sdxl_base_id, subfolder="vae").to(device)
|
152 |
+
unet = UNet2DConditionModel.from_pretrained(sdxl_base_id, subfolder="unet").to(device)
|
153 |
+
unet = unet
|
154 |
+
|
155 |
+
ckpt_state_dict = torch.load(checkpoint_path, map_location=device)
|
156 |
+
|
157 |
+
o = OrderedDict()
|
158 |
+
for key in list(ckpt_state_dict.keys()):
|
159 |
+
o[key.replace("module.", "")] = ckpt_state_dict[key]
|
160 |
+
del ckpt_state_dict
|
161 |
+
|
162 |
+
print("Applying weights to text encoder 1:")
|
163 |
+
text_encoder1.load_state_dict({
|
164 |
+
'.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.cond_stage_model.model.transformer")
|
165 |
+
}, strict=False)
|
166 |
+
print("Applying weights to text encoder 2:")
|
167 |
+
text_encoder2.load_state_dict({
|
168 |
+
'.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("cond_stage_model.model.transformer")
|
169 |
+
}, strict=False)
|
170 |
+
print("Applying weights to VAE:")
|
171 |
+
vae.load_state_dict({
|
172 |
+
'.'.join(key.split('.')[2:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.model")
|
173 |
+
}, strict=False)
|
174 |
+
print("Applying weights to UNet:")
|
175 |
+
unet.load_state_dict({
|
176 |
+
key: o[key] for key in list(o.keys()) if key.startswith("model.diffusion_model")
|
177 |
+
}, strict=False)
|
178 |
+
|
179 |
+
logit_scale = None #Not used here!
|
180 |
+
global_step = None #Not used here!
|
181 |
+
return text_encoder1, text_encoder2, vae, unet, logit_scale, global_step
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Error loading models from checkpoint: {e}")
|
184 |
+
return None
|
185 |
|
186 |
def save_stable_diffusion_checkpoint(save_path, text_encoder1, text_encoder2, unet, epoch, global_step, ckpt_info, vae, logit_scale, save_dtype):
|
187 |
"""Saves the stable diffusion checkpoint."""
|
|
|
709 |
|
710 |
# Create tempdir, will only be there for the function
|
711 |
with tempfile.TemporaryDirectory() as output_path:
|
712 |
+
conversion_output = convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, use_xformers, hf_token, orgs_name, model_name, make_private)
|
713 |
|
714 |
upload_output = upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private)
|
715 |
|