Spaces:
Running
Running
Update app.py
#22
by
Duskfallcrew
- opened
app.py
CHANGED
@@ -2,77 +2,21 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
|
5 |
-
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTextConfig
|
6 |
from safetensors.torch import load_file
|
7 |
from collections import OrderedDict
|
8 |
-
import re
|
9 |
-
import json
|
10 |
import requests
|
11 |
-
import subprocess
|
12 |
from urllib.parse import urlparse, unquote
|
13 |
from pathlib import Path
|
14 |
import hashlib
|
15 |
-
from datetime import datetime
|
16 |
-
from typing import Dict, List, Optional
|
17 |
from huggingface_hub import login, HfApi, hf_hub_download
|
18 |
from huggingface_hub.utils import validate_repo_id, HFValidationError
|
19 |
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
20 |
from huggingface_hub.utils import HfHubHTTPError
|
21 |
|
22 |
-
|
23 |
-
# ---------------------- DEPENDENCIES ----------------------
|
24 |
-
def install_dependencies_gradio():
|
25 |
-
"""Installs the necessary dependencies."""
|
26 |
-
try:
|
27 |
-
subprocess.run(
|
28 |
-
[
|
29 |
-
"pip",
|
30 |
-
"install",
|
31 |
-
"-U",
|
32 |
-
"torch",
|
33 |
-
"diffusers",
|
34 |
-
"transformers",
|
35 |
-
"accelerate",
|
36 |
-
"safetensors",
|
37 |
-
"huggingface_hub",
|
38 |
-
"xformers",
|
39 |
-
]
|
40 |
-
)
|
41 |
-
print("Dependencies installed successfully.")
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Error installing dependencies: {e}")
|
44 |
-
|
45 |
-
|
46 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
|
|
47 |
|
48 |
-
|
49 |
-
def increment_filename(filename):
|
50 |
-
"""Increments the filename to avoid overwriting existing files."""
|
51 |
-
base, ext = os.path.splitext(filename)
|
52 |
-
counter = 1
|
53 |
-
while os.path.exists(filename):
|
54 |
-
filename = f"{base}({counter}){ext}"
|
55 |
-
counter += 1
|
56 |
-
return filename
|
57 |
-
|
58 |
-
|
59 |
-
# ---------------------- UPLOAD FUNCTION ----------------------
|
60 |
-
def create_model_repo(api, user, orgs_name, model_name, make_private=False):
|
61 |
-
"""Creates a Hugging Face model repository."""
|
62 |
-
repo_id = (
|
63 |
-
f"{orgs_name}/{model_name.strip()}"
|
64 |
-
if orgs_name
|
65 |
-
else f"{user['name']}/{model_name.strip()}"
|
66 |
-
)
|
67 |
-
try:
|
68 |
-
api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
|
69 |
-
print(f"Model repo '{repo_id}' created.")
|
70 |
-
except HfHubHTTPError:
|
71 |
-
print(f"Model repo '{repo_id}' already exists.")
|
72 |
-
return repo_id
|
73 |
-
|
74 |
-
|
75 |
-
# ---------------------- MODEL LOADING AND CONVERSION ----------------------
|
76 |
def download_model(model_path_or_url):
|
77 |
"""Downloads a model, handling URLs, HF repos, and local paths."""
|
78 |
try:
|
@@ -125,10 +69,21 @@ def download_model(model_path_or_url):
|
|
125 |
raise ValueError(f"Error downloading or accessing model: {e}")
|
126 |
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def load_sdxl_checkpoint(checkpoint_path):
|
130 |
-
"""Loads checkpoint and extracts state dicts
|
131 |
-
|
132 |
if checkpoint_path.endswith(".safetensors"):
|
133 |
state_dict = load_file(checkpoint_path, device="cpu")
|
134 |
elif checkpoint_path.endswith(".ckpt"):
|
@@ -142,44 +97,34 @@ def load_sdxl_checkpoint(checkpoint_path):
|
|
142 |
unet_state = OrderedDict()
|
143 |
|
144 |
for key, value in state_dict.items():
|
145 |
-
if key.startswith("first_stage_model."):
|
146 |
vae_state[key.replace("first_stage_model.", "")] = value.to(torch.float16)
|
147 |
-
elif key.startswith("condition_model.model.text_encoder."):
|
148 |
text_encoder1_state[key.replace("condition_model.model.text_encoder.", "")] = value.to(torch.float16)
|
149 |
-
elif key.startswith("condition_model.model.text_encoder_2."):
|
150 |
text_encoder2_state[key.replace("condition_model.model.text_encoder_2.", "")] = value.to(torch.float16)
|
151 |
-
elif key.startswith("model.diffusion_model."):
|
152 |
unet_state[key.replace("model.diffusion_model.", "")] = value.to(torch.float16)
|
153 |
|
154 |
return text_encoder1_state, text_encoder2_state, vae_state, unet_state
|
155 |
|
156 |
|
157 |
|
158 |
-
def build_diffusers_model(
|
159 |
-
text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path=None
|
160 |
-
):
|
161 |
"""Builds Diffusers components, loading state dicts with strict=False."""
|
162 |
-
|
163 |
if not reference_model_path:
|
164 |
reference_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
reference_model_path, subfolder="text_encoder"
|
169 |
-
)
|
170 |
-
config_text_encoder2 = CLIPTextConfig.from_pretrained(
|
171 |
-
reference_model_path, subfolder="text_encoder_2"
|
172 |
-
)
|
173 |
config_vae = AutoencoderKL.from_pretrained(reference_model_path, subfolder="vae").config
|
174 |
config_unet = UNet2DConditionModel.from_pretrained(reference_model_path, subfolder="unet").config
|
175 |
|
176 |
-
# Create instances using the configurations
|
177 |
text_encoder1 = CLIPTextModel(config_text_encoder1)
|
178 |
-
text_encoder2 = CLIPTextModelWithProjection(config_text_encoder2)
|
179 |
vae = AutoencoderKL(config=config_vae)
|
180 |
unet = UNet2DConditionModel(config=config_unet)
|
181 |
|
182 |
-
# Load state dicts with strict=False
|
183 |
text_encoder1.load_state_dict(text_encoder1_state, strict=False)
|
184 |
text_encoder2.load_state_dict(text_encoder2_state, strict=False)
|
185 |
vae.load_state_dict(vae_state, strict=False)
|
@@ -190,29 +135,16 @@ def build_diffusers_model(
|
|
190 |
vae.to(torch.float16).to("cpu")
|
191 |
unet.to(torch.float16).to("cpu")
|
192 |
|
193 |
-
|
194 |
return text_encoder1, text_encoder2, vae, unet
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
checkpoint_path_or_url, output_path, reference_model_path
|
199 |
-
):
|
200 |
-
"""Converts and saves the Illustrious-xl checkpoint to Diffusers format."""
|
201 |
-
|
202 |
checkpoint_path = download_model(checkpoint_path_or_url)
|
203 |
-
|
204 |
-
text_encoder1_state, text_encoder2_state, vae_state, unet_state = (
|
205 |
-
load_sdxl_checkpoint(checkpoint_path)
|
206 |
-
)
|
207 |
text_encoder1, text_encoder2, vae, unet = build_diffusers_model(
|
208 |
-
text_encoder1_state,
|
209 |
-
text_encoder2_state,
|
210 |
-
vae_state,
|
211 |
-
unet_state,
|
212 |
-
reference_model_path,
|
213 |
)
|
214 |
|
215 |
-
# Load tokenizer and scheduler from the reference model
|
216 |
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
217 |
reference_model_path,
|
218 |
text_encoder=text_encoder1,
|
@@ -225,9 +157,6 @@ def convert_and_save_sdxl_to_diffusers(
|
|
225 |
pipeline.save_pretrained(output_path)
|
226 |
print(f"Model saved as Diffusers format: {output_path}")
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
# ---------------------- UPLOAD FUNCTION ----------------------
|
231 |
def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private):
|
232 |
"""Uploads a model to the Hugging Face Hub."""
|
233 |
login(token=hf_token, add_to_git_credential=True)
|
@@ -237,8 +166,8 @@ def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_priv
|
|
237 |
api.upload_folder(folder_path=model_path, repo_id=model_repo)
|
238 |
print(f"Model uploaded to: https://huggingface.co/{model_repo}")
|
239 |
|
|
|
240 |
|
241 |
-
# ---------------------- GRADIO INTERFACE ----------------------
|
242 |
def main(
|
243 |
model_to_load,
|
244 |
reference_model,
|
@@ -248,7 +177,16 @@ def main(
|
|
248 |
model_name,
|
249 |
make_private,
|
250 |
):
|
251 |
-
"""Main function: SDXL checkpoint to Diffusers,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
try:
|
254 |
convert_and_save_sdxl_to_diffusers(
|
@@ -257,10 +195,15 @@ def main(
|
|
257 |
upload_to_huggingface(
|
258 |
output_path, hf_token, orgs_name, model_name, make_private
|
259 |
)
|
260 |
-
|
|
|
|
|
261 |
except Exception as e:
|
262 |
-
|
|
|
|
|
263 |
|
|
|
264 |
|
265 |
css = """
|
266 |
#main-container {
|
@@ -271,7 +214,7 @@ css = """
|
|
271 |
color: #333;
|
272 |
}
|
273 |
#convert-button {
|
274 |
-
margin-top: 1em;
|
275 |
}
|
276 |
"""
|
277 |
|
@@ -306,7 +249,6 @@ with gr.Blocks(css=css) as demo:
|
|
306 |
|
307 |
with gr.Row():
|
308 |
with gr.Column():
|
309 |
-
|
310 |
model_to_load = gr.Textbox(
|
311 |
label="SDXL Checkpoint (Path, URL, or HF Repo)",
|
312 |
placeholder="Path, URL, or Hugging Face Repo ID (e.g., my-org/my-model or my-org/my-model/file.safetensors)",
|
@@ -315,25 +257,17 @@ with gr.Blocks(css=css) as demo:
|
|
315 |
label="Reference Diffusers Model (Optional)",
|
316 |
placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0 (Leave blank for default)",
|
317 |
)
|
318 |
-
output_path = gr.Textbox(
|
319 |
-
|
320 |
-
)
|
321 |
-
|
322 |
-
label="Hugging Face Token", placeholder="Your Hugging Face write token", type="password"
|
323 |
-
)
|
324 |
-
orgs_name = gr.Textbox(
|
325 |
-
label="Organization Name (Optional)", placeholder="Your organization name"
|
326 |
-
)
|
327 |
-
model_name = gr.Textbox(
|
328 |
-
label="Model Name", placeholder="The name of your model on Hugging Face"
|
329 |
-
)
|
330 |
make_private = gr.Checkbox(label="Make Repository Private", value=False)
|
331 |
-
|
332 |
convert_button = gr.Button("Convert and Upload")
|
333 |
|
334 |
-
with gr.Column(variant="panel"):
|
335 |
output = gr.Markdown(container=False)
|
336 |
|
|
|
337 |
convert_button.click(
|
338 |
fn=main,
|
339 |
inputs=[
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
|
5 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTextConfig
|
6 |
from safetensors.torch import load_file
|
7 |
from collections import OrderedDict
|
|
|
|
|
8 |
import requests
|
|
|
9 |
from urllib.parse import urlparse, unquote
|
10 |
from pathlib import Path
|
11 |
import hashlib
|
|
|
|
|
12 |
from huggingface_hub import login, HfApi, hf_hub_download
|
13 |
from huggingface_hub.utils import validate_repo_id, HFValidationError
|
14 |
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
15 |
from huggingface_hub.utils import HfHubHTTPError
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
18 |
+
# (download_model, create_model_repo, etc. - All unchanged, but included for completeness)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def download_model(model_path_or_url):
|
21 |
"""Downloads a model, handling URLs, HF repos, and local paths."""
|
22 |
try:
|
|
|
69 |
raise ValueError(f"Error downloading or accessing model: {e}")
|
70 |
|
71 |
|
72 |
+
def create_model_repo(api, user, orgs_name, model_name, make_private=False):
|
73 |
+
"""Creates a Hugging Face model repository."""
|
74 |
+
repo_id = (
|
75 |
+
f"{orgs_name}/{model_name.strip()}"
|
76 |
+
if orgs_name
|
77 |
+
else f"{user['name']}/{model_name.strip()}"
|
78 |
+
)
|
79 |
+
try:
|
80 |
+
api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
|
81 |
+
print(f"Model repo '{repo_id}' created.")
|
82 |
+
except HfHubHTTPError:
|
83 |
+
print(f"Model repo '{repo_id}' already exists.")
|
84 |
+
return repo_id
|
85 |
def load_sdxl_checkpoint(checkpoint_path):
|
86 |
+
"""Loads checkpoint and extracts state dicts."""
|
|
|
87 |
if checkpoint_path.endswith(".safetensors"):
|
88 |
state_dict = load_file(checkpoint_path, device="cpu")
|
89 |
elif checkpoint_path.endswith(".ckpt"):
|
|
|
97 |
unet_state = OrderedDict()
|
98 |
|
99 |
for key, value in state_dict.items():
|
100 |
+
if key.startswith("first_stage_model."):
|
101 |
vae_state[key.replace("first_stage_model.", "")] = value.to(torch.float16)
|
102 |
+
elif key.startswith("condition_model.model.text_encoder."):
|
103 |
text_encoder1_state[key.replace("condition_model.model.text_encoder.", "")] = value.to(torch.float16)
|
104 |
+
elif key.startswith("condition_model.model.text_encoder_2."):
|
105 |
text_encoder2_state[key.replace("condition_model.model.text_encoder_2.", "")] = value.to(torch.float16)
|
106 |
+
elif key.startswith("model.diffusion_model."):
|
107 |
unet_state[key.replace("model.diffusion_model.", "")] = value.to(torch.float16)
|
108 |
|
109 |
return text_encoder1_state, text_encoder2_state, vae_state, unet_state
|
110 |
|
111 |
|
112 |
|
113 |
+
def build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path=None):
|
|
|
|
|
114 |
"""Builds Diffusers components, loading state dicts with strict=False."""
|
|
|
115 |
if not reference_model_path:
|
116 |
reference_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
117 |
|
118 |
+
config_text_encoder1 = CLIPTextConfig.from_pretrained(reference_model_path, subfolder="text_encoder")
|
119 |
+
config_text_encoder2 = CLIPTextConfig.from_pretrained(reference_model_path, subfolder="text_encoder_2")
|
|
|
|
|
|
|
|
|
|
|
120 |
config_vae = AutoencoderKL.from_pretrained(reference_model_path, subfolder="vae").config
|
121 |
config_unet = UNet2DConditionModel.from_pretrained(reference_model_path, subfolder="unet").config
|
122 |
|
|
|
123 |
text_encoder1 = CLIPTextModel(config_text_encoder1)
|
124 |
+
text_encoder2 = CLIPTextModelWithProjection(config_text_encoder2) # Correct class
|
125 |
vae = AutoencoderKL(config=config_vae)
|
126 |
unet = UNet2DConditionModel(config=config_unet)
|
127 |
|
|
|
128 |
text_encoder1.load_state_dict(text_encoder1_state, strict=False)
|
129 |
text_encoder2.load_state_dict(text_encoder2_state, strict=False)
|
130 |
vae.load_state_dict(vae_state, strict=False)
|
|
|
135 |
vae.to(torch.float16).to("cpu")
|
136 |
unet.to(torch.float16).to("cpu")
|
137 |
|
|
|
138 |
return text_encoder1, text_encoder2, vae, unet
|
139 |
|
140 |
+
def convert_and_save_sdxl_to_diffusers(checkpoint_path_or_url, output_path, reference_model_path):
|
141 |
+
"""Converts and saves the checkpoint to Diffusers format."""
|
|
|
|
|
|
|
|
|
142 |
checkpoint_path = download_model(checkpoint_path_or_url)
|
143 |
+
text_encoder1_state, text_encoder2_state, vae_state, unet_state = load_sdxl_checkpoint(checkpoint_path)
|
|
|
|
|
|
|
144 |
text_encoder1, text_encoder2, vae, unet = build_diffusers_model(
|
145 |
+
text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path
|
|
|
|
|
|
|
|
|
146 |
)
|
147 |
|
|
|
148 |
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
149 |
reference_model_path,
|
150 |
text_encoder=text_encoder1,
|
|
|
157 |
pipeline.save_pretrained(output_path)
|
158 |
print(f"Model saved as Diffusers format: {output_path}")
|
159 |
|
|
|
|
|
|
|
160 |
def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private):
|
161 |
"""Uploads a model to the Hugging Face Hub."""
|
162 |
login(token=hf_token, add_to_git_credential=True)
|
|
|
166 |
api.upload_folder(folder_path=model_path, repo_id=model_repo)
|
167 |
print(f"Model uploaded to: https://huggingface.co/{model_repo}")
|
168 |
|
169 |
+
# ---------------------- MAIN FUNCTION (with Debugging Prints) ----------------------
|
170 |
|
|
|
171 |
def main(
|
172 |
model_to_load,
|
173 |
reference_model,
|
|
|
177 |
model_name,
|
178 |
make_private,
|
179 |
):
|
180 |
+
"""Main function: SDXL checkpoint to Diffusers, with debugging prints."""
|
181 |
+
|
182 |
+
print("---- Main Function Called ----") # Debug Print
|
183 |
+
print(f" model_to_load: {model_to_load}") # Debug Print
|
184 |
+
print(f" reference_model: {reference_model}") # Debug Print
|
185 |
+
print(f" output_path: {output_path}") # Debug Print
|
186 |
+
print(f" hf_token: {hf_token}") # Debug Print
|
187 |
+
print(f" orgs_name: {orgs_name}") # Debug Print
|
188 |
+
print(f" model_name: {model_name}") # Debug Print
|
189 |
+
print(f" make_private: {make_private}") # Debug Print
|
190 |
|
191 |
try:
|
192 |
convert_and_save_sdxl_to_diffusers(
|
|
|
195 |
upload_to_huggingface(
|
196 |
output_path, hf_token, orgs_name, model_name, make_private
|
197 |
)
|
198 |
+
result = "Conversion and upload completed successfully!"
|
199 |
+
print(f"---- Main Function Successful: {result} ----") # Debug Print
|
200 |
+
return result
|
201 |
except Exception as e:
|
202 |
+
error_message = f"An error occurred: {e}"
|
203 |
+
print(f"---- Main Function Error: {error_message} ----") # Debug Print
|
204 |
+
return error_message
|
205 |
|
206 |
+
# ---------------------- GRADIO INTERFACE (Corrected Button Placement) ----------------------
|
207 |
|
208 |
css = """
|
209 |
#main-container {
|
|
|
214 |
color: #333;
|
215 |
}
|
216 |
#convert-button {
|
217 |
+
margin-top: 1em;
|
218 |
}
|
219 |
"""
|
220 |
|
|
|
249 |
|
250 |
with gr.Row():
|
251 |
with gr.Column():
|
|
|
252 |
model_to_load = gr.Textbox(
|
253 |
label="SDXL Checkpoint (Path, URL, or HF Repo)",
|
254 |
placeholder="Path, URL, or Hugging Face Repo ID (e.g., my-org/my-model or my-org/my-model/file.safetensors)",
|
|
|
257 |
label="Reference Diffusers Model (Optional)",
|
258 |
placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0 (Leave blank for default)",
|
259 |
)
|
260 |
+
output_path = gr.Textbox(label="Output Path (Diffusers Format)", value="output")
|
261 |
+
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Your Hugging Face write token", type="password")
|
262 |
+
orgs_name = gr.Textbox(label="Organization Name (Optional)", placeholder="Your organization name")
|
263 |
+
model_name = gr.Textbox(label="Model Name", placeholder="The name of your model on Hugging Face")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
make_private = gr.Checkbox(label="Make Repository Private", value=False)
|
|
|
265 |
convert_button = gr.Button("Convert and Upload")
|
266 |
|
267 |
+
with gr.Column(variant="panel"):
|
268 |
output = gr.Markdown(container=False)
|
269 |
|
270 |
+
# --- CORRECT BUTTON CLICK PLACEMENT ---
|
271 |
convert_button.click(
|
272 |
fn=main,
|
273 |
inputs=[
|