File size: 5,918 Bytes
67ae540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be3d23
67ae540
 
2ba0a0c
 
67ae540
 
5be3d23
67ae540
 
 
 
 
 
 
6a423bd
67ae540
 
 
 
5be3d23
67ae540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be3d23
67ae540
5be3d23
 
 
 
67ae540
5be3d23
 
 
 
67ae540
 
 
5be3d23
67ae540
 
5be3d23
67ae540
 
5be3d23
67ae540
2ba0a0c
67ae540
 
 
2ba0a0c
 
67ae540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# import gradio as gr
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
# from threading import Thread
# from qwen_vl_utils import process_vision_info
# import torch
# import time

# # Check if a GPU is available
# device = "cuda" if torch.cuda.is_available() else "cpu"

# local_path = "Fancy-MLLM/R1-OneVision-7B"

# # Load the model on the appropriate device (GPU if available, otherwise CPU)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     local_path, torch_dtype="auto", device_map=device
# )
# processor = AutoProcessor.from_pretrained(local_path)

# def generate_output(image, text, button_click):
#     # Prepare input data
#     messages = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
#                 {"type": "text", "text": text},
#             ],
#         }
#     ]
    
#     # Prepare inputs for the model
#     text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
#     image_inputs, video_inputs = process_vision_info(messages)
#     inputs = processor(
#         text=[text_input],
#         images=image_inputs,
#         videos=video_inputs,
#         padding=True,
#         return_tensors="pt",
#     )
    
#     # Move inputs to the same device as the model
#     inputs = inputs.to(model.device)

#     streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
#     generation_kwargs = dict(
#         **inputs,
#         streamer=streamer,
#         max_new_tokens=4096,
#         top_p=0.001,
#         top_k=1,
#         temperature=0.01,
#         repetition_penalty=1.0,
#     )
    
#     thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     thread.start()
#     generated_text = ''
    
#     try:
#         for new_text in streamer:
#             generated_text += new_text
#             yield f"β€Ž{generated_text}"
#     except Exception as e:
#         print(f"Error: {e}")
#         yield f"Error occurred: {str(e)}"

# Css = """
# #output-markdown {
#     overflow-y: auto;
#     white-space: pre-wrap; 
#     word-wrap: break-word;
# }
# #output-markdown .math {
#     overflow-x: auto;
#     max-width: 100%;
# }
# .markdown-text {
#     white-space: pre-wrap;
#     word-wrap: break-word;
# }
# .markdown-output {
#     min-height: 20vh;
#     max-width: 100%;
#     overflow-y: auto;
# }
# #qwen-md .katex-display { display: inline; }
# #qwen-md .katex-display>.katex { display: inline; }
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
# """

# with gr.Blocks(css=Css) as demo:
#     gr.HTML("""<center><font size=8>πŸ¦– R1-OneVision Demo</center>""")

#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(type="pil", label="Upload")  # **ζ”Ήε›ž PIL 倄理**
#             input_text = gr.Textbox(label="Input your question")
#             with gr.Row():
#                 clear_btn = gr.ClearButton([input_image, input_text])
#                 submit_btn = gr.Button("Submit", variant="primary")

#         with gr.Column():
#             output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")

#     submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)

# demo.launch(share=False)


import gradio as gr
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces

MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda").eval()

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Load images if provided
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    # Validate input
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")
        return
    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
        return

    # Prepare messages for the model
    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ],
        }
    ]

    # Apply chat template and process inputs
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=images if images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")

    # Set up streamer for real-time output
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)

    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the output
    buffer = ""
    yield "Thinking..."
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer


demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Fancy-MLLM/R1-OneVision-7B**",
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True)